首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Fucoxanthin is the main carotenoid produced in brown algae as a component of the light-harvesting complex for photosynthesis and photoprotection. In contrast to the complete elucidation of the carotenoid biosynthetic pathways in red and green algae, the biosynthetic pathway of fucoxanthin in brown algae is not fully understood. Recently, two models for the fucoxanthin biosynthetic pathway have been proposed in unicellular diatoms; however, there is no such information for the pathway in brown seaweeds to date. Here, we propose a biosynthetic pathway for fucoxanthin in the brown seaweed, Ectocarpus siliculosus, derived from comparison of carotenogenic genes in its sequenced genome with those in the genomes of two diatoms, Thalassiosira pseudonana and Phaeodactylum tricornutum. Currently, fucoxanthin is receiving attention, due to its potential benefits for human health. Therefore, new knowledge regarding the medical and nutraceutical properties of fucoxanthin from brown seaweeds is also summarized here.  相似文献   

3.
It is widely accepted that unesterified polyunsaturated ω-6 and ω-3 fatty acids (PUFA) are converted through various lipoxygenases, cyclooxygenases, and cytochrome P450 enzymes to a range of oxygenated derivatives (oxylipins), among which the polyhydroxides of unesterified PUFA have recently been recognized as cell signaling molecules with anti-inflammatory and pro-resolving properties, known as specialized pro-resolving mediators (SPMs). This study investigates the mono-, di-, and trihydroxy 16:0/PUFA-GPCs, and the corresponding 16:0/SPM-GPC, in plasma lipoproteins. We describe the isolation and identification of mono-, di-, and trihydroxy AA, EPA, and DHA-GPC in plasma LDL, HDL, HDL3, and acute phase HDL using normal phase LC/ESI-MS, as previously reported. The lipoproteins contained variable amounts of the polyhydroxy-PUFA-GPC (0–10 nmol/mg protein), likely the product of lipid peroxidation and the action of various lipoxygenases and cytochrome P450 enzymes on both free fatty acids and the parent GPCs. Polyhydroxy-PUFA-GPC was hydrolyzed to variable extent (20%–80%) by the different secretory phospholipases A2 (sPLA2s), with Group IIA sPLA2 showing the lowest and Group X sPLA2 the highest activity. Surprisingly, the trihydroxy-16:0/PUFA-GPC of APHDL was largely absent, while large amounts of unidentified material had migrated in the free fatty acid elution area. The free fatty acid mass spectra were consistent with that anticipated for branched chain polyhydroxy fatty acids. There was general agreement between the masses determined by LC/ESI-MS for the polyhydroxy PUFA-GPC and the masses calculated for the GPC equivalents of resolvins, protectins, and maresins using the fatty acid structures reported in the literature.  相似文献   

4.
The reassembly and heterologous expression of complete gene clusters in shuttle vectors has enabled investigations of several large biosynthetic pathways in recent years. With a gene cluster in a mobile construct, the interrogation of gene functions from both culturable and nonculturable organisms is greatly accelerated and large pathway engineering efforts can be executed to produce "new" natural products. However, the genetic manipulation of complete natural product biosynthetic gene clusters is often complicated by their sheer size (10-200 kbp), which makes standard restriction/ligation-based methods impracticable. To circumvent these problems, alternative recombinogenic methods, which depend on engineered homology-based recombination have recently arisen as a powerful alternative. Here, we describe a new general technique that can be used to reconstruct large biosynthetic pathways from overlapping cosmids by retrofitting each cosmid with a "recombinogenic cassette" that contains a shared homologous element and orthogonal antibiotic markers. We employed this technique to reconstruct the anthramycin biosynthetic gene cluster of the thermotolerant actinomycete Streptomyces refuineus, from two >30 kbp cosmids into a single cosmid and integrate it into the genome of Streptomyces lividans. Anthramycin production in the heterologous Streptomyces host confirmed the integrity of the reconstructed pathway and validated the proposed boundaries of the gene cluster. Notably, anthramycin production by recombinant S. lividans was seen only during growth at high temperature--a property also shown by the natural host. This work provides tools to engineer the anthramycin biosynthetic pathway and to explore the connection between anthramycin production and growth at elevated temperatures.  相似文献   

5.
In animals and plants, fatty acids with at least three double bonds can be oxidized to prostaglandin-like compounds via enzymatic and non-enzymatic pathways. The most common fatty acid precursor in mammals is arachidonic acid (C20:4) (AA) which can be converted through the cyclooxygenase pathway to a series of prostaglandins (PG). Non-enzymatic cyclization of arachidonate yields a series of isoprostanes (IsoP) which comprises all PG (minor compounds) as well as PG isomers that cannot be formed enzymatically. In contrast, in plants, α-linolenic acid (C18:3) (ALA) is the most common substrate for the allene oxide synthase pathway leading to the jasmonate (JA) family of lipid mediators. Non-enzymatic oxidation of linolenate leads to a series of C18-IsoPs termed dinor IsoP or phytoprostanes (PP). PP structurally resemble JA but cannot be formed enzymatically. We will give an overview of the biological activity of the different classes of PP and also discuss their analytical applications and the strategies developed so far for the total synthesis of PP, depending on the synthetic approaches according to the targets and which key steps serve to access the natural products.  相似文献   

6.
7.
Serhan CN  Arita M  Hong S  Gotlinger K 《Lipids》2004,39(11):1125-1132
The molecular basis for the beneficial impact of essential omega-3 (n−3) FA remains of interest. Recently, we identified novel mediators generated from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) that displayed potent bioactions identified first in resolving inflammatory exudates and in tissues enriched with DHA. The trivial names resolvin (resolution phase interaction products) and docosatrienes were introduced for the bioactive compounds from these novel series since they possess potent anti-inflammatory and immunoregulatory actions. Compounds derived from EPA carrying potent biological actions (i.e., 1–10 nM range) are designated E series and denoted resolvins of the E series (resolvin E1 or RvE1), and those biosynthesized from the precursor DHA are denoted resolvins of the D series (resolvin D1 or RvD1). The number 1 designates the bioactive compounds in this family (e.g., 1–4). Bioactive members from DHA-containing conjugated triene structures or docosatrienes (DT) that possess immunoregulatory and neuroprotective actions were termed neuroprotectins. Aspirin treatment initiates a related epimeric series by triggering endogenous formation of the 17R-D series resolvins and docosatrienes. These epimers are denoted as aspirin-triggered (AT)-RvD and DT, and possess potent anti-in-flammatory actions in vivo essentially equivalent to their 17S series pathway products. These include five distinct series: (i) 18R resolvins from EPA (i.e., RvE1); (ii) 17R series (AT) resolvins from DHA (RvD1 through RvD4); (iii) 17S series resolvins from DHA (RvD1 through RvD4), (iv) DT from DHA; and (v) their AT form 17R series DT. In this article, we provide an overview of the formation and actions of these newly uncovered pathways and products.  相似文献   

8.
In response to feeding larvae of the Mediterranean climbing cutworm (Spodoptera littoralis), leaves of the lima bean (Phaseolus lunatus) produce fatty acid-derived signaling compounds (oxylipins). The major products are the phytohormones jasmonic acid and its biosynthetic precursor 12-oxophytodienoic acid (OPDA), along with 13-hydroxy-12-oxooctadeca-9,15-dienoic acid, 9-hydroxy-12-oxooctadeca-10,15-dienoic acid (alpha- and gamma-ketol), as well as unsaturated aldehydes. Oxylipin production is highest at the feeding zone of the insect and decreases with distance from the damaged area. Accordingly, the feeding insect experiences high local concentrations of oxylipins, which are taken up into the alimentary canal and are finally excreted with the feces. In contrast to most other oxylipins, OPDA was not detectable in the insect's gut; instead the structurally related tetrahydrodicranenone B (iso-OPDA) was identified. Feeding experiments with deuterium-labeled OPDA proved that the isomerization is catalyzed by an enzyme from the insect's gut tissue. The phenomenon appears to be widespread among Lepidopteran larvae.  相似文献   

9.
In the brain, approximately 90% of oxylipins are esterified to lipids. However, the significance of this esterification process is not known. In the present study, we (1) validated an aminopropyl solid phase extraction (SPE) method for separating esterified lipids using 100 and 500 mg columns and (2) applied the method to quantify the distribution of esterified oxylipins within phospholipids (PL) and neutral lipids (NL) (i.e. triacylglycerol and cholesteryl ester) in rats subjected to head-focused microwave fixation (controls) or CO2-induced hypercapnia/ischemia. We hypothesized that oxylipin esterification into these lipid pools will be altered following CO2-induced hypercapnia/ischemia. Lipids were extracted from control (n = 8) and CO2-asphyxiated (n = 8) rat brains and separated on aminopropyl cartridges to yield PL and NL. The separated lipid fractions were hydrolyzed, purified with hydrophobic–lipophilic–balanced SPE columns, and analyzed with ultra-high-pressure liquid chromatography coupled to tandem mass spectrometry. Method validation showed that the 500 mg (vs 100 mg) aminopropyl columns yielded acceptable separation and recovery of esterified fatty acid epoxides but not other oxylipins. Two epoxides of arachidonic acid (ARA) were significantly increased, and three epoxides of docosahexaenoic acid (DHA) were significantly decreased in brain NL of CO2-asphyxiated rats compared to controls subjected to head-focused microwave fixation. PL-bound fatty acid epoxides were highly variable and did not differ significantly between the groups. This study demonstrates that hypercapnia/ischemia alters the concentration of ARA and DHA epoxides within NL, reflecting an active turnover process regulating brain fatty acid epoxide concentrations.  相似文献   

10.
William H. Gerwick 《Lipids》1996,31(12):1215-1231
Marine organisms, especially marine algae, are extremely rich in a diversity of novel oxylipin structures. Many of these oxylipins contain functionalities and rings of a type and location unknown in mammalian systems. In this perspective reviewing marine oxylipins, a proposal is formulated for the central intermediacy of an epoxy allylic carbocation in the biogenesis of these diverse structures. This proposal is strengthened by the relatively large number of examples which are consistent with this type of mechanistic transformation.  相似文献   

11.
The reconstruction of a natural product biosynthetic pathway from bacteria in a vector and subsequent heterologous expression in a technically amenable microbial system represents an efficient alternative to empirical traditional methods for functional discovery, yield improvement, and genetic engineering to produce "unnatural" derivatives. However, the traditional cloning procedure based on genomic library construction and screening are complicated due to the large size (>10 kb) of most biosynthetic pathways. Here, we describe the direct cloning of a partial syringolin biosynthetic gene cluster (sylCDE, 19 kb) from a digested genomic DNA mixture of Pseudomonas syringae into a plasmid in which sylCDE is under the control of an inducible promoter by one step linear-plus-linear homologous recombination (LLHR) in Escherichia coli. After expression in E. coli GB05-MtaA, two new syringolin derivatives were discovered. The complete syringolin gene cluster was assembled by addition of sylAB and exchange of a synthetic bidirectional promoter against the native promoter to drive sylB and sylC expression by using Red/ET recombineering. The varying production distribution of syringolin derivatives showed the different efficiencies of native and synthetic promoters in E. coli. The successful reconstitution and expression of the syringolin biosynthetic pathway shows that Red/ET recombineering is an efficient tool to clone and engineer secondary metabolite biosynthetic pathways.  相似文献   

12.
Neutral sphingomyelinase (Smase) is a cell membrane-associated phospholipase that hydrolyzes sphingomyelin to phosphocholine and ceramide, a lipid second messenger involved in cell differentiation and/or apoptosis. We first evidenced that porcine cultured thyroid cells could express neutral Smase activity even if thyrotropin (TSH), an essential hormone in thyroid cell differentiation, was found to induce a 1.7-fold decrease in Smase activity. Triggering the ceramide pathway by exogenous addition of neutral bacterial Smase (0.1 U/mL for 48 h), which transiently increased ceramide level by fourfold, drastically modified thyroid cell morphology. The follicle-like structures generated by TSH were disrupted, and the Smase-induced cell spreading was accompanied by a parallel loss of cell ability to iodinate proteins as well as a decrease of the adenylate cyclase system response. These inhibitory effects have been reproduced using short-chain exogenous ceramide analogs (C2-ceramides). Overall these data showed that ceramides emerged as potential mediators of dedifferentiation in thyroid cells.  相似文献   

13.
Biosynthesis of antimicrobial secondary metabolites in response to microbial infection is one of the features of the plant immune system. Particular classes of plant secondary metabolites involved in plant defence are often produced only by species belonging to certain phylogenetic clades. Brassicaceae plants have evolved the ability to synthesise a wide range of sulfur-containing secondary metabolites, including glucosinolates and indole-type phytoalexins. A subset of these compounds is produced by the model plant Arabidopsis thaliana. Genetic tools available for this species enabled verification of immune functions of glucosinolates and camalexin (A. thaliana phytoalexin), as well as characterisation of their respective biosynthetic pathways. Current knowledge of the biosynthesis of Brassicaceae sulfur-containing metabolites suggests that the key event in the evolution of these compounds is the acquisition of biochemical mechanisms originating from detoxification pathways into secondary metabolite biosynthesis. Moreover, it is likely that glucosinolates and Brassicaceae phytoalexins, traditionally considered as separate groups of compounds, have a common evolutionary origin and are interconnected on the biosynthetic level. This suggests that the diversity of Brassicaceae sulfur-containing phytochemicals reflect phylogenetic clade-specific branches of an ancient biosynthetic pathway.  相似文献   

14.
Mitochondria are double membrane-bound organelles in eukaryotic cells essential to a variety of cellular functions including energy conversion and ATP production, iron-sulfur biogenesis, lipid and amino acid metabolism, and regulating apoptosis and stress responses. Mitochondrial dysfunction is mechanistically linked to several neurodegenerative diseases, cancer, and ageing. Excessive and dysfunctional/damaged mitochondria are degraded by selective autophagic pathways known as mitophagy. Both budding yeast and mammals use the well-conserved machinery of core autophagy-related genes (ATGs) to execute and regulate mitophagy. In mammalian cells, the PINK1-PARKIN mitophagy pathway is a well-studied pathway that senses dysfunctional mitochondria and marks them for degradation in the lysosome. PINK1-PARKIN mediated mitophagy relies on ubiquitin-binding mitophagy adaptors that are non-ATG proteins. Loss-of-function mutations in PINK1 and PARKIN are linked to Parkinson´s disease (PD) in humans, and defective mitophagy is proposed to be a main pathomechanism. Despite the common view that yeast cells lack PINK1- and PARKIN-homologs and that mitophagy in yeast is solely regulated by receptor-mediated mitophagy, some studies suggest that a ubiquitination-dependent mitophagy pathway also exists. Here, we will discuss shared mechanisms between mammals and yeast, how mitophagy in the latter is regulated in a ubiquitin-dependent and -independent manner, and why these pathways are essential for yeast cell survival and fitness under various physiological stress conditions.  相似文献   

15.
16.
5-Lipoxygenase (5-LOX) plays a key role in inflammation through the biosynthesis of leukotrienes and other lipid mediators. Current evidence suggests that dietary (poly)phenols exert a beneficial impact on human health through anti-inflammatory activities. Their mechanisms of action have mostly been associated with the modulation of pro-inflammatory cytokines (TNF-α, IL-1β), prostaglandins (PGE2), and the interaction with NF-κB and cyclooxygenase 2 (COX-2) pathways. Much less is known about the 5-lipoxygenase (5-LOX) pathway as a target of dietary (poly)phenols. This systematic review aimed to summarize how dietary (poly)phenols target the 5-LOX pathway in preclinical and human studies. The number of studies identified is low (5, 24, and 127 human, animal, and cellular studies, respectively) compared to the thousands of studies focusing on the COX-2 pathway. Some (poly)phenolics such as caffeic acid, hydroxytyrosol, resveratrol, curcumin, nordihydroguaiaretic acid (NDGA), and quercetin have been reported to reduce the formation of 5-LOX eicosanoids in vitro. However, the in vivo evidence is inconclusive because of the low number of studies and the difficulty of attributing effects to (poly)phenols. Therefore, increasing the number of studies targeting the 5-LOX pathway would largely expand our knowledge on the anti-inflammatory mechanisms of (poly)phenols.  相似文献   

17.
Porter  Todd D. 《Lipids》2015,50(10):927-936
Cholesterol synthesis in the endoplasmic reticulum requires electron input at multiple steps and utilizes both NADH and NADPH as the electron source. Four enzymes catalyzing five steps in the pathway require electron input: squalene monooxygenase, lanosterol demethylase, sterol 4α‐methyl oxidase, and sterol C5‐desaturase. The electron‐donor proteins for these enzymes include cytochrome P450 reductase and the cytochrome b5 pathway. Here I review the evidence for electron donor protein requirements with these enzymes, the evidence for additional electron donor pathways, and the effect of deletion of these redox enzymes on cholesterol and lipid metabolism.  相似文献   

18.
Induced chemical defense reactions are widespread in marine brown algae. Despite the evidence that the biosynthesis of defense metabolites can be up-regulated upon herbivory, we do not know how this regulation of biosynthetic pathways to secondary metabolites is achieved in brown algae. In higher plants, the phytohormone jasmonic acid (JA) is crucial for the mediation of induced chemical defenses, and several findings of this metabolite from marine sources have been reported. We tested the hypothesis that JA or related metabolites play a role in induced brown algal defense. Quantification of oxylipins with a detection limit around 20 ng g−1 algal tissue did not reveal the presence of JA in the seven examined brown algal species Dictyota dichotoma, Colpomenia peregrina, Ectocarpus fasciculatus, Fucus vesiculosus, Himanthalia elongata, Saccharina latissima (formerly Laminaria saccharina), and Sargassum muticum. Moreover, treatment with ecologically relevant concentrations of JA and methyl jasmonate did not lead to a significant change in the profile of medium- and non-polar metabolites of the tested algae. Only when high concentrations of ≥500 μg ml−1 medium of the phytohormones were applied that a metabolic response which could be attributed to unspecific stress was observed. Bioassays with D. dichotoma that focused on medium- and non-polar compounds confirmed the lack of a biological role of JA and methyl jasmonate in the induction of algal induced chemical defenses. The phytohormone-treated samples did not exhibit any increased defense potential towards the amphipod Ampithoe longimana and the isopod Paracerceis caudata. JA and related phytohormones, known to be active in higher plants, thus appear to play no role in brown algae for induction of the defense chemicals studied here.  相似文献   

19.
During the last decade, we have persistently addressed the question, “how can the innate immune system be used as a therapeutic tool to eliminate cancer?” A cancerous tumor harbors innate immune cells such as macrophages, which are held in the tumor-promoting M2 state by tumor-cell-released cytokines. We have discovered that these tumor-associated macrophages (TAM) are repolarized into the nitric oxide (NO)-generating tumoricidal M1 state by the dietary agent curcumin (CC), which also causes recruitment of activated natural killer (NK) cells and cytotoxic T (Tc) cells into the tumor, thereby eliminating cancer cells as well as cancer stem cells. Indications are that this process may be NO-dependent. Intriguingly, the maximum blood concentration of CC in mice never exceeds nanomolar levels. Thus, our results submit that even low, transient levels of curcumin in vivo are enough to cause repolarization of the TAM and recruitment NK cells as well as Tc cells to eliminate the tumor. We have observed this phenomenon in two cancer models, glioblastoma and cervical cancer. Therefore, this approach may yield a general strategy to fight cancer. Our mechanistic studies have so far implicated induction of STAT-1 in this M2→M1 switch, but further studies are needed to understand the involvement of other factors such as the lipid metabolites resolvins in the CC-evoked anticancer pathways.  相似文献   

20.
The identification of a 36 kb welwitindolinone (wel) biosynthetic gene cluster in Hapalosiphon welwitschii UTEX B1830 is reported. Characterization of the enzymes responsible for assembling the early biosynthetic intermediates geranyl pyrophosphate and 3‐((Z)‐2′‐isocyanoethenyl)indole as well as a dedicated N‐methyltransferase in the maturation of N‐methylwelwitindolinone C isothiocyanate solidified the link between the wel pathway and welwitindolinone biosynthesis. Comparative analysis of the ambiguine and welwitindolinone biosynthetic pathways in two different organisms provided insights into the origins of diverse structures within hapalindole‐type molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号