首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The concept of complementary decarbonisation of power generation from renewable energy sources and fossil fuels consists of their integration in one system. A technology network in the form of a CCU‐combined power plant is proposed for the energy generation from fossil fuels by a coal power plant with CO2 recovery from the exhaust gases and a pyrolysis of natural gas to hydrogen and carbon as a basic technology. This technology network is completed by a reverse water‐gas shift reaction for the conversion of the CO2 to CO, which will react with the hydrogen in a Fischer‐Tropsch synthesis for synthetic diesel. The recovered energy from the exothermic Fischer‐Tropsch synthesis meets the energy needs of CO2 scrubbing. The carbon from the pyrolysis can replace other fossil carbon or can be sequestered.  相似文献   

2.
CO2 is considered to play a key role in an eventual climate change, due to its accumulation in the atmosphere. The control of its emission represents a challenging task that requires new ideas and new technologies. The use of perennial energy sources and renewable fuels instead of fossil fuels and the conversion of CO2 into useful products are receiving increased attention. The utilization of CO2 as a raw material for the synthesis of chemicals and fuels is an area in which scientists and industrialists are much involved: the implementation of such technology on a large scale would allow a change from a linear use of fossil carbon to its cyclic use, mimicking Nature. In this paper the use of CO2 as building block is discussed. CO2 can replace toxic species such as phosgene in low energy processes, or can be used as source of carbon for the synthesis of energy products. The reactions with dihydrogen, alcohols, epoxides, amines, olefins, dienes, and other unsaturated hydrocarbons are discussed, under various reaction conditions, using metal systems or enzymes as catalysts. The formation of products such as formic acid and its esters, formamides, methanol, dimethyl carbonate, alkylene carbonates, carbamic acid esters, lactones, carboxylic acids, and polycarbonates, is described . The factors that have limited so far the conversion of large volumes of CO2 are analyzed and options for large‐scale CO2 catalytic conversion into chemicals and fuels are discussed. Both homogeneous and heterogeneous catalysts are considered and the pros and cons of their use highlighted. © 2013 Society of Chemical Industry  相似文献   

3.
Natural gas from fossil sources has to be substituted by climate neutral gases to contribute to CO2-reduction in our future energy system. Pyrolysis of natural gas is a well-known technical process to produce carbon. Production of hydrogen from natural gas pyrolysis has gained interest in research and energy technology in the near past. If the carbon by-product of this process can be used for material production or can be sequestrated, the produced hydrogen has a minimum carbon footprint. This article is a literature review on the state of the art of methane / natural gas pyrolysis process developments.  相似文献   

4.
Large-Scale Hydrogen Production   总被引:3,自引:0,他引:3  
There is a growing need for hydrogen in processing heavier and dirtier fossil fuels and a future hydrogen economy is widely suggested as the next generation fuel/energy source once fossil fuels diminish in availability. Sustainable fuels are still regarded as too expensive given the large amounts of natural gas and a projected, ample supply of fossil fuels beyond the next twenty-plus years. Today, the steam reforming of hydrocarbons is the most favorable route to H2. If CO2 sequestration were ever to become widely practiced, fossil fuels would continue to play an important role in the future hydrogen economy.  相似文献   

5.
This study evaluates the use of cracking for the removal of carbon from fuels to be used in a power generation process. Unlike conventional power generation systems, the proposed system includes a cracking unit, the function of which is to convert primary fuels into H2 rich syngas and solid carbon, thus avoiding the emission of CO2 and the need for carbon capture and storage (CCS) in the power generation system. Based on the thermodynamic analysis of equilibrium reactions in the cracker, it is demonstrated that the operating temperature has a significant influence on the carbon capture rate achieved and the composition of the syngas. Carbon in the fuel can be captured in solid form from hydrocarbon fuels when operating the cracker at sufficiently high temperatures; however, only a portion of carbon can be captured in a solid form from oxygenated hydrocarbon fuels, with the maximum carbon capture rate being achieved at an optimum temperature. An energy analysis, which takes into account the energy penalty of CCS for the conventional power generation system, reveals that the net available energy from the proposed system is still not as high as that of the conventional system with CCS; however, the solid carbon can be of high commercial value when appropriate technology is employed to convert the carbon byproduct into a high-added-value carbon product such as carbon black or carbon nanotubes (CNTs).  相似文献   

6.
J. N. Armor 《Catalysis Letters》2007,114(3-4):115-121
Perspectives are offered for reducing the impact of huge amounts of CO2 produced today from power generation and transportation vehicles. The origins of the dilemma between the world’s increasing use of hydrocarbons as an energy source and the cogeneration of CO2 which results as a co-product are discussed. Hydrocarbons will provide much of the fuel needs for these major, global industries for the next 20 years and meet 60% of the world’s energy demand. With the growth of both power generation and transportation vehicles around the world, CO2 levels will continue to increase in the atmosphere. Renewables such as wind, dams, and biomass will not be able to handle all the energy demand. Technology breakthroughs are needed to reduce the world’s dependence on fossil fuels, which will be aggravated by the drive to use more coal. Current approaches for removing CO2 are discussed as well as near term and future options with particular focus on how catalysis can offer some solutions. In particular, solar photocatalysis based approaches offer a potentially viable energy solution.  相似文献   

7.
The 2007 IEA's World Energy Outlook report predicts that the world's energy needs will grow by 55% between 2005 and 2030, with fossil fuels accounting for 84% of this massive projected increase in energy demand. An undesired side effect of burning fossil fuels is carbon dioxide (CO2) emission which is now widely believed to be responsible for the problem of global warming. Various strategies are being considered for addressing the increase in demand for energy and at the same time developing technologies to make energy greener by reducing CO2 emissions.One of these strategies is to ‘capture’ produced CO2 instead of releasing it into the atmosphere. Capturing CO2 and its injection in oil reservoirs can lead to improved oil recovery as well as CO2 retention and storage in these reservoirs. The technology is referred to as CCS (carbon capture and storage). Large point sources of CO2 (e.g., coal-fired power plants) are particularly good candidates for capturing large volumes of CO2. However, CO2 capture from power plants is currently very expensive. In addition to high costs of CO2 capture, the very low pressure of the flue gas (1 atm) and its low CO2 content (typically 10-15%) contribute to the high cost of CO2 capture from power plants and the subsequent compression. This makes conventional CO2 flooding (which requires very large volumes of CO2) uneconomical in many oil reservoirs around the world which would otherwise be suitable candidates for CO2 injection. Alternative strategies are therefore needed to utilize smaller sources of CO2 that are usually available around oil and gas fields and can be captured at lower costs (due to their higher pressure and higher CO2 concentration).We investigate the potential of carbonated (CO2-enriched) water injection (CWI) as an injection strategy for improving recovery from oil reservoirs with the added benefit of safe storage of CO2. The performance of CWI was investigated by conducting high-pressure flow visualization as well as coreflood experiments at reservoir conditions. The results show that CWI significantly improves oil recovery from water flooded porous media. A relatively large fraction of the injected CO2 was retained (stored) in the porous medium in the form of dissolved CO2 in water and oil. The results clearly demonstrate the huge potential of CWI as a productive way of utilizing CO2 for improving oil recovery and safe storage of potentially large cumulative quantities of CO2.  相似文献   

8.
There is an increasing concern with the environmental problems associated with the increasing CO2, NOx and SOx emissions resulting from the rising use of fossil fuels. Renewable energy, mainly biomass, can contribute to reduce the fossil fuels consumption. Biomass is a renewable resource with a widespread world distribution. Tomato processing industry produces a high amount of biomass residue (peel and seeds) that could be used for thermal energy and electricity. A characterization and thermogravimetric study has been carried out. The residue has a high HHV and volatile content, and a low ash, and S contents. A kinetic model has been developed based on the degradation of hemicellulose, cellulose, lignin and oil that describe the pyrolysis of peel, seeds and peel and seeds residues.  相似文献   

9.
生物质能源是惟一可再生、可替代化石能源转换成气态、液态和固态燃料以及其他化工原料或者产品的碳资源。随着化石能源的枯竭和人类对全球性环境问题的关注,生物质能源替代化石能源利用的研究和开发,已成为国内外众多学者研究和关注的热点。本系列讲座主要讲述以生物质资源为主要原料,通过不同途径转化为洁净的、高品位的气体、液体或固体燃料。本讲主要对生物质的热解气化方式进行了介绍,着重介绍了生物质气化集中供气、供热、发电、合成液体燃料、制氢等技术方面的研究和应用现状,并指出了目前存在的主要问题,提出了我国在生物质气化领域的重点研究方向。  相似文献   

10.
The relation between anthropogenic emissions of CO2 and its increased levels in the atmosphere with global warming and climate change has been well established and accepted. Major portion of carbon dioxide released to the atmosphere, originates from combustion of fossil fuels. Integrated gasification combined cycle (IGCC) offers a promising fossil fuel technology considered as a clean coal-based process for power generation particularly if accompanied by precombustion capture. The latter includes separation of carbon dioxide from a synthesis gas mixture containing 40 mol% CO2 and 60 mol% H2.A novel approach for capturing CO2 from the above gas mixture is to use gas hydrate formation. This process is based on selective partition of CO2 between hydrate phase and gas phase and has already been studied with promising results. However high-pressure requirement for hydrate formation is a major problem.We have used semiclathrate formation from tetrabutylammonium bromide (TBAB) to experimentally investigate CO2 capture from a mixture containing 40.2 mol% of CO2 and 59.8 mol% of H2. The results shows that in one stage of gas hydrate formation and dissociation, CO2 can be enriched from 40 mol% to 86 mol% while the concentration of CO2 in equilibrium gas phase is reduced to 18%. While separation efficiency of processes based on hydrates and semi-clathrates are comparable, the presence of TBAB improves the operating conditions significantly. Furthermore, CO2 concentration could be increased to 96 mol% by separating CO2 in two stages.  相似文献   

11.
Gasification technology, which converts fossil fuels into either combustible gas or synthesis gas (syngas) for subsequent utilization, offers the potential of both clean power and chemicals. Especially, IGCC is recognized as next power generation technology which can replace conventional coal power plants in the near future. It produces not only power but also chemical energy sources such as H2, DME and other chemicals with simultaneous reduction of CO2. This study is focused on the determination of operating conditions for a 300 MW scale IGCC plant with various feedstocks through ASPEN plus simulator. The input materials of gasification are chosen as 4 representative cases of pulverized dry coal (Illinois#6), coal water slurry, bunker-C and naphtha. The gasifier model reflects on the reactivity among the components of syngas in the gasification process through the comparison of syngas composition from a real gasifier. For evaluating the performance of a gasification plant from developed models, simulation results were compared with a real commercial plant through approximation of relative error between real operating data and simulation results. The results were then checked for operating characteristics of each unit process such as gasification, ash removal, acid gas (CO2, H2S) removal and power islands. To evaluate the performance of the developed model, evaluated parameters are chosen as cold gas efficiency and carbon conversion for the gasifier, power output and efficiency of combined cycle. According to simulation results, pulverized dry coal which has 40.93% of plant net efficiency has relatively superiority over the other cases such as 33.45% of coal water slurry, 35.43% of bunker-C and 30.81% of naphtha for generating power in the range of equivalent 300 MW.  相似文献   

12.
The production of energy in Pakistan as a developing country mainly depends on consumption of fossil fuels, which are the main sources of greenhouse gas (GHG) emissions. These emissions can be mitigated by implementing carbon capture and storage (CCS) in running plants. An overview of the current and future potentials of Pakistan for CCS is provided, indicating a great potential for this technology to capture CO2 emissions. The amine CO2 capture process as the most mature procedure is currently applied in many oil and gas companies in Pakistan, which can be employed to capture CO2 from other industries as well. Pakistan has a great CO2 storage potential in oil, gas, and coal fields and in saline aquifer as well as significant resources of Mg and Ca silicates suitable as feedstock in the carbon mineralization process. For further development and implementation of CCS technologies in Pakistan, economic and policy barriers as the main obstacles should be alleviated.  相似文献   

13.
Achieving net zero carbon dioxide (CO2) emissions will require the cessation of fossil fuel emissions into the atmosphere, yet the need for ‘fuel’ and energy storage will remain. One solution could be a carbon-based fuel system where CO2 of biogenic origin is converted to fuels using hydrogen generated by electrolysis powered by renewable energy sources. Methane has value as an initial target given its prevalence in biogas, use in home heating and in electricity generation. Sources of CO2 in Eastern Canada are dominated by the iron and steel, cement, and aluminium industries, all of which have biogenic fuel options. Collecting all of the potentially biogenic CO2 would displace 75% of current natural gas use and require a 50% increase in generating capacity. Initial efforts could site a carbon capture, utilization, and storage facility near Montreal, QC, with other large-scale facilities near Hamilton, ON, and Lac St-Jean, QC. These facilities would be grid connected and expected to operate ~6200 h annually. The most high-frequency electrolysis events would be 10 h of run time and 2 h of idle time. These periods would peak during the equinox months and be at a minimum during the winter solstice. These operational assumptions will all be subject to the increased variability caused by anthropogenic climate change and increased renewable generation on the grid. A closed-loop carbon-based fuel system would require an equivalent price of $250 per tonne CO2.  相似文献   

14.
The reduction of carbon dioxide to useful chemicals has received a great deal of attention as an alternative to the depletion of fossil resources without altering the atmospheric CO2 balance. As the chemical reduction of CO2 is energetically uphill due to its remarkable thermodynamic stability, this process requires a significant transfer of energy. Achievements in the fields of photocatalysis during the last decade sparked increased interest in the possibility of using sunlight to reduce CO2. In this review we discuss some general features associated with the photocatalytic reduction of CO2 for the production of solar fuels, with considerations to be taken into account of the photocatalyst design, of the limitations arising from the lack of visible light response of titania, of the use of co-catalysts to overcome this shortcoming, together with several strategies that have been applied to enhance the photocatalytic efficiency of CO2 reduction. The aim is not to provide an exhaustive review of the area, but to present general aspects to be considered, and then to outline which are currently the most efficient photocatalytic systems.  相似文献   

15.
This article presents a fleet‐wide model for energy planning that can be used to determine the optimal structure necessary to meet a given CO2 reduction target while maintaining or enhancing power to the grid. The model incorporates power generation as well as CO2 emissions from a fleet of generating stations (hydroelectric, fossil fuel, nuclear, and wind). The model is formulated as a mixed integer program and is used to optimize an existing fleet as well as recommend new additional generating stations, carbon capture and storage, and retrofit actions to meet a CO2 reduction target and electricity demand at a minimum overall cost. The model was applied to the energy supply system operated by Ontario power generation (OPG) for the province of Ontario, Canada. In 2002, OPG operated 79 electricity generating stations; 5 are fueled with coal (with a total of 23 boilers), 1 by natural gas (4 boilers), 3 nuclear, 69 hydroelectric and 1 wind turbine generating a total of 115.8 TWh. No CO2 capture process existed at any OPG power plant; about 36.7 million tonnes of CO2 was emitted in 2002, mainly from fossil fuel power plants. Four electricity demand scenarios were considered over a span of 10 years and for each case the size of new power generation capacity with and without capture was obtained. Six supplemental electricity generating technologies have been allowed for: subcritical pulverized coal‐fired (PC), PC with carbon capture (PC+CCS), integrated gasification combined cycle (IGCC), IGCC with carbon capture (IGCC+CCS), natural gas combined cycle (NGCC), and NGCC with carbon capture (NGCC+CCS). The optimization results showed that fuel balancing alone can contribute to the reduction of CO2 emissions by only 3% and a slight, 1.6%, reduction in the cost of electricity compared to a calculated base case. It was found that a 20% CO2 reduction at current electricity demand could be achieved by implementing fuel balancing and switching 8 out of 23 coal‐fired boilers to natural gas. However, as demand increases, more coal‐fired boilers needed to be switched to natural gas as well as the building of new NGCC and NGCC+CCS for replacing the aging coal‐fired power plants. To achieve a 40% CO2 reduction at 1.0% demand growth rate, four new plants (2 NGCC, 2 NGCC+CCS) as well as carbon capture processes needed to be built. If greater than 60% CO2 reductions are required, NGCC, NGCC+CCS, and IGCC+CCS power plants needed to be put online in addition to carbon capture processes on coal‐fired power plants. The volatility of natural gas prices was found to have a significant impact on the optimal CO2 mitigation strategy and on the cost of electricity generation. Increasing the natural gas prices resulted in early aggressive CO2 mitigation strategies especially at higher growth rate demands. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

16.
Calcium looping is a CO2 capture scheme using solid CaO-based sorbents to remove CO2 from flue gases, e.g., from a power plant, producing a concentrated stream of CO2 (∼95%) suitable for storage. The scheme exploits the reversible gas-solid reaction between CO2 and CaO(s) to form CaCO3(s). Calcium looping has a number of advantages compared to closer-to-market capture schemes, including: the use of circulating fluidised bed reactors—a mature technology at large scale; sorbent derived from cheap, abundant and environmentally benign limestone and dolomite precursors; and the relatively small efficiency penalty that it imposes on the power/industrial process (i.e., estimated at 6-8 percentage points, compared to 9.5-12.5 from amine-based post-combustion capture). A further advantage is the synergy with cement manufacture, which potentially allows for decarbonisation of both cement manufacture and power production. In addition, a number of advanced applications offer the potential for significant cost reductions in the production of hydrogen from fossil fuels coupled with CO2 capture. The range of applications of calcium looping are discussed here, including the progress made towards demonstrating this technology as a viable post-combustion capture technology using small-pilot scale rigs, and the early progress towards a 2 MW scale demonstrator.  相似文献   

17.
Hydrogen production possibilities for future energy systems with reduced carbon dioxide emission. All possible hydrogen production methods which are of technical importance or could become technically important have been systematically classified. The conventional processes based on fossil raw materials, as well as hydrogen production from biomass, are considered with a view to the separation of CO2 or the minimization of CO2 emission by using nuclear energy or solar energy, or by using electric energy generated from these primary energies. In addition, possibilities of hydrogen production with carbon separation are investigated. The nonfossil processes using thermal, electric or radiation energy are treated briefly, and water electrolysis is described in more detail. Finally, the hydrogenation of fossil raw materials is discussed, which would lead to mixed carbon-hydrogen energy systems.  相似文献   

18.
煤炭热力学高效和化学高价值利用新工艺   总被引:2,自引:1,他引:1       下载免费PDF全文
提出一种煤炭热力学高效和化学高价值利用新工艺(TCCUC),包括煤炭拔头技术-半焦富氧直燃制备燃气轮机高温工质系统-燃气发电-蒸汽发电系统-CO2捕集技术-干馏拔头产物提质处理技术六个技术模块。该工艺通过煤干馏拔头和焦油加氢等技术,对煤中大分子碳氢化合物进行适当热解和对热解产物焦油加氢处理得到高价值的碳氢液体燃料,实现煤炭的化学高价值利用;通过高温过滤、半焦直燃、燃气轮机与蒸汽轮机相结合等方法,实现对煤炭燃烧过程中高位热能的充分利用,进一步提高热-电联产效率。  相似文献   

19.
《Fuel Processing Technology》1999,58(2-3):119-134
CO2 is the final product of combustion of all fossil fuels. CO2 itself has little value by far, but it contributes more than 50% to the man-made greenhouse effect among all the greenhouse gases. There is still no proven technology for the chemical utilization of such a plentiful carbon resource. Recently, non-thermal plasmas have been found to be effective in the activation of CO2 for the formation of more valuable hydrocarbons. The non-thermal plasma approaches can even be performed at ambient condition. In this review, the present state of carbon dioxide utilization via non-thermal plasmas is addressed.  相似文献   

20.
The objective of this study is to assess the green house gas (GHG) emission for the production of bio-oil from oil palm biomass and its utilization for 10 MW power generation by evaluating the life cycle carbon footprint analysis. The life cycle GHG emission assessment includes four main stages, which cover the oil-palm cultivation, palm oil mill operation, biomass transportation and pyrolysis process for the production of bio-oil and its utilization for 10MW power generation. The results obtained suggest that the palm bio-oil has potential as a carbon neutral renewable energy source in the future. More importantly, it has no negative impact on the environment as the amount of CO2 emitted to the atmosphere during combustion of this fuel is lower than that of the CO2 absorbed from the atmosphere during cultivation stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号