首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
通过一步水热法制备La掺杂的纳米二氧化钛光催化剂,以硫酸氧钛为原料,反应温度为180℃,反应时间为12 h,制备出二氧化钛微球,通过降解罗丹明B检测催化剂的光催化活性。采用扫描电镜(SEM)、能谱(EDS)、X射线衍射(XRD)、紫外漫反射(UV-Vis)对样品进行表征。结果表明,一步水热法可制备出La掺杂二氧化钛微球,粒径可达73 nm,当硫酸氧钛与尿素物质的量之比为1∶2时催化活性最好,对罗丹明B降解率达到87%,当掺入0.5%La后催化性能更好,70 min对罗丹明B的降解率达到95%以上。  相似文献   

2.
以硫酸钛、硝酸铁、尿素为原料,采用自燃烧法制备了氮、铁共掺杂的纳米TiO2粉体.XRD结果显示氮、铁共掺杂的纳米TiO2主要为锐钛矿相.当氮、铁共掺杂时,二氧化钛光谱吸收红移至可见区.XPS结果表明:铁进入TiO2的晶格中形成浅势,氮则取代氧原子形成了N-Ti键,它们的形成降低了二氧化钛的带隙,从而提高了可见光区的光催化能力.当氮、铁对钛的物质的量比分别为0.5%和0.6%时,其在可见光下降解亚甲基蓝的降解率分别是单掺杂和纯TiO2的1.4和3倍.  相似文献   

3.
以四氯化钛、有机羧酸、稳定剂、表面活性剂、氨水、偏钒酸铵等简单易得的试剂为主要原料,采用常温络合-控制水解新技术,制备出了钒氮共掺杂的纳米二氧化钛透明乳液。采用X射线衍射(XRD)、纳米激光粒度分析仪、紫外-可见分光光度计等对样品进行了表征。结果表明:样品平均粒度在7nm左右,晶型为锐钛矿,样品最大吸收边拓展到了可见光区域。当钒氮掺杂量为0.1%,回流时间为30min时,得到钒氮共掺杂纳米TiO2水溶胶的光催化性能最好,经太阳光照射50min后,对浓度为50mg/L的酸性红3R染料溶液的降解率达到98%以上。  相似文献   

4.
氮掺杂纳米二氧化钛的制备及其光催化性能   总被引:1,自引:0,他引:1  
刘广军  赵广旺  高洪涛 《山东化工》2009,38(8):16-18,29
以三乙醇胺为氮源采用水热法制备了氮掺杂纳米TiO2光催化剂,采用XRD、TEM和UV—vis/DRS分析、表征氮掺杂对TiO2微晶尺寸、晶体结构、表面组成与光学性能的影响,并通过降解甲基橙溶液研究其光催化活性。结果表明:制得的氮掺杂二氧化钛均为锐钛矿型,粒径约为10nm,a掺杂引起光催化剂的吸收波长向可见光区红移。当pH=11.0,300℃焙烧3h时制得的氮掺杂TiO2光催化活性最强,甲基橙50min的降解率达98%。  相似文献   

5.
以钛酸四丁酯、氟化铵、硼酸为原料,采取改进的溶胶-凝胶法制备了氟、硼共掺杂的纳米二氧化钛粉体.XRD结果显示氟、硼共掺杂不仅可以抑制晶粒生长,还可以阻止锐钛矿相向金红石相的转变.当氟、硼物质的量比为5∶ 20时,其表现出更好的可见光响应.XPS 结果表明:氟和硼分别和钛形成了F-Ti键和B-Ti键,它们的形成可提高价带中光生空穴的氧化能力和拉窄二氧化钛的带隙,从而提高了其可见光照射下的光催化活性.可见光照射下降解4-氯苯酚,结果表明:经600 ℃煅烧2 h的样品,氟、硼物质的量比为5∶ 20,其降解率分别是单掺杂和纯二氧化钛的1.5到3倍.总有机碳(TOC)分析结果表明4-氯苯酚在可见光照射下被光催化剂有效地矿化.  相似文献   

6.
吕露  吴广文  吴浩  周耀华  赵亮 《工业催化》2012,20(11):30-33
以尿素为氮源,利用溶胶-凝胶法制备了掺氮的N-SrTiO3光催化剂。采用XRD、SEM和UV-Vis对N-SrTiO3的物相、形貌和吸光性能进行表征,以高压汞灯为光源,通过甲基橙脱色率考察催化剂活性。结果表明,氮元素的掺杂增强了SrTiO3在可见光区的吸收强度,当制备过程pH=3~4、n(N)∶n(Sr)=6∶1和焙烧温度800 ℃时,甲基橙溶液降解率达72.69%,未掺杂样品降解率为28.55%。  相似文献   

7.
多种光源下氮掺杂TiO_2光催化降解染料废水的研究   总被引:3,自引:1,他引:2  
以尿素为氮源,采用溶胶-凝胶法制备了氮掺杂纳米TiO2粉末,以甲基橙溶液为模拟染料废水,分别在可见光、模拟太阳光和紫外光条件下,研究了氮掺杂纳米TiO2光催化降解染料废水的性能。结果表明:氮掺杂可以提高TiO2的可见光催化活性;氮含量和煅烧温度对氮掺杂TiO2光催化活性影响较大,n(N)∶n(Ti)为10%且经500℃煅烧的氮掺杂TiO2在可见光和模拟太阳光下均具有最佳的光催化活性;然而在紫外光下,氮掺杂TiO2的光催化活性低于未掺杂的TiO2样品。  相似文献   

8.
为了研究不同掺杂对二氧化钛光化学活性的影响,采用溶胶-凝胶,水热法,由TiOCl2成功制备了掺杂氮原子的二氧化钛样品,并制备了掺杂0.5%(摩尔分数)Fe3 ,Gu2 ,V5 ,Pd2 等金属离子的可见光响应型介孔材料.样品经由X射线衍射,透射电镜,Brunauer-Emmett-Teller(BET)比表面积,Barrett-Joyner-Halenda孔径分布,紫外可见光谱,光电子能谱和荧光光谱等表征;以荧光灯为光源(入射光波长λ≥410 nm),光催化降解甲醛为模式,评价了样品的催化活性.结果表明:掺杂Fe3 ,Cu2 ,V5 ,Pd2 的二氧化钛和单一掺氮的二氧化钛样品的粒径均为10 nm左右,BET比表面积为130 m2/g左右,均为锐钛矿相二氧化钛;Fe/TiO2,Cu/TiO2,V/TiO2,Pd/TiO2和TiO2/N样品的带隙能依次为:2.99,2.93,2.36,2.92 eV和2.87 eV,其在可见光下的光催化降解速率常数分别为:0.006 3,0.008 6,0.004 9,0.003 l/min和0.003 3/min.Cu/TiO2较高的荧光强度和较大的比表面积,导致了其较高的可见光光解活性.  相似文献   

9.
采用低温水热法,以四氯化钛为钛源,尿素为氮源,聚乙二醇(PEG-4000)为分散剂,在较低的水热温度下合成了高分散氮掺杂纳米二氧化钛/氧化石墨烯(GO)复合材料,利用XRD、TEM、FT-IR、Raman对合成样品的晶型、形貌及结构进行了表征。以染料亚甲基蓝为目标降解物,以可见光为光源,对样品的光催化活性进行评价。结果表明,用水热法合成的高分散氮掺杂纳米二氧化钛/氧化石墨烯复合材料表现出良好的光催化活性。  相似文献   

10.
以乙酰氨基苯酚(APAP)为模板剂,钛酸四丁酯为前驱体、硝酸镧为掺杂剂,经溶胶-凝胶法制备了La掺杂分子印迹TiO_2。对La掺杂分子印迹TiO_2光催化剂样品性能进行了表征,以紫外及可见光(λ400 nm)催化降解APAP模拟废水,考察了La掺杂量、焙烧温度对光催化活性的影响。结果表明:La掺入抑制了锐钛矿晶粒生长,比表面积增加,可见光吸收增强,光催化活性提高:且当n(La):n(Ti)=0.60%,500℃热处理2h,样品的光催化活性最佳,光催化降解10mg/LAPAP模拟废水,紫外光照射70min去除率为85.5%,总有机碳(TOC)去除率达62.5%:可见光照射40h去除率为90.8%。  相似文献   

11.
以钛酸四丁酯为钛源,采用溶胶-凝胶法合成了三种纳米TiO2粉末,采用X衍射仪、氮气等温吸附仪、红外光谱仪、综合热分析仪、紫外可见光分光光度计对样品进行了表征。结果表明,三种纳米TiO2粉末均为锐钛晶型,晶粒尺寸为20 nm,比表面积均>80 m2/g。紫外光线照射120 min时,三种粉末对罗丹明B溶液的光催化降解率均>90.0%,照射时间达180 min时,降解率均>99.5%,而商品级P25纳米TiO2粉末对罗丹明B溶液的降解率较低,120和180 min时的光催化降解率仅为37.1%和69.0%。  相似文献   

12.
以钛酸四丁酯和乙醇为原料,尿素为氮源,室温下采用溶胶-凝胶法制备了氮掺杂的纳米TiO2粉末。采用XRD、TEM、UV-Vis DRS对样品进行了表征。结果表明:N掺杂使纳米TiO2的光谱响应范围拓展到可见光区。较佳制备条件是:n(钛酸四丁酯)∶n(尿素)为1∶3,400 ℃下煅烧3.5 h,所得样品为锐钛矿晶型,平均粒径为13 nm。光降解甲基橙实验中,溶液pH值为4.0时,降解率最大,反应3 h降解率可达70.5%。  相似文献   

13.
以纳米管钛酸为前驱体,采用水热法先制备得到新型N掺杂二氧化钛,然后用沉积沉淀法在N掺杂二氧化钛表面负载微量贵金属Au,制备得到负载Au的掺N二氧化钛.利用TEM、XRD、XPS、ESR和DRS等手段研究了样品的形貌、晶体结构、元素化学态和光谱吸收性质.样品光催化活性通过可见光催化降解丙烯进行评价,结果表明,样品N-TiO2和Au/N-TiO2具有明显的可见光(λ≥420 nm)催化活性.ESR结果表明,掺氮过程中生成的束缚单电子的氧空位是样品具有可见光响应的原因.  相似文献   

14.
在[Bmim]PF_6离子液体介质中,用微波辐射加热方法制备了氮-硼共掺杂的纳米TiO_2-N-B光催化剂,并以甲基橙为模拟污染物,紫外灯为光源,考察了离子液体用量、氮-硼掺杂量、微波功率、微波干燥时间及微波焙烧等因素对其光催化活性的影响。结果表明,制备TiO_2-N-B催化剂的最佳条件:[Bmim]PF_6的加入量为5.6 mL,n(B)∶n(N)∶n(Ti)=4∶1.5∶1;微波炉210 W干燥18min,600℃焙烧1.5 h;或真空干燥2 h,微波辐射分三段(350 W→560 W→210 W)焙烧19 min(10.0 min→3.0 min→6.0 min)。与单一掺杂的TiO_2-B或TiO_2-N催化剂相比,氮-硼共掺杂的TiO_2-N-B催化剂催化活性明显提高,这是因为氮-硼共掺杂能够抑制TiO_2粒径的生长。  相似文献   

15.
采用溶胶凝胶法制备了镱掺杂TiO2纳米光催化剂,并通过XRD、IR和BET对样品进行表征。在紫外光照射下,以罗丹明B为光催化目标降解物,考察了催化剂的光催化性能。结果表明:Yb/TiO2比纯TiO2具有更好的光催化活性。制备Yb/TiO2光催化剂的最佳条件是:n(Yb)/n(Ti)为1.0%,HAc为3mL,溶液pH值为1.4,PEG为0.5g,湿凝胶陈化时间为2d,干燥时间为12h,干凝胶煅烧温度为600℃,煅烧时间为3h,此条件下制备出的Yb/TiO2能使罗丹明B的降解率达到88.9%。结构表征说明掺镱二氧化钛粉体降低了TiO2的颗粒粒径,增加了比表面积,提高了光催化活性。  相似文献   

16.
以四氯化钛为钛源,硝酸铈铵为改性原料,采用非水体系溶胶-凝胶法制备了二氧化钛催化剂。采用XRD、UV-Vis和SEM等测试技术对样品进行了表征。结果显示:硝酸铈铵的添加抑制了TiO2晶粒的生长,可使其对可见光吸收增强并且改变了其形貌及尺寸。以苯酚为模型,考察了样品的催化性能。结果表明,在n(Ce)∶n(Ti)为0.3%的条件下,于550℃下焙烧的TiO2催化剂的催化活性最好。3 h光照后,苯酚降解率为93.1%。  相似文献   

17.
钴掺杂二氧化钛光催化剂制备及光催化活性   总被引:2,自引:0,他引:2  
采用溶胶-凝胶法制备了纯二氧化钛和不同钴掺杂量的二氧化钛复合纳米粒子。并用XRD、UV-Vis对样品组织结构进行了表征。以甲基橙(OM)的光催化降解为探针反应,评价了可见光催化活性,研究了不同热处理温度、不同钴掺杂量对二氧化钛光催化性能的影响。确定了最佳钴掺杂量和热处理温度分别为1%(物质的量分数)和600  ℃。在此条件下,钴的掺杂对二氧化钛的相变有很大的抑制作用,并使其光谱响应范围向可见光区拓展。与未掺杂的二氧化钛相比较,经钴掺杂的二氧化钛具有更高的催化性能。  相似文献   

18.
为了解决纳米TiO_2带隙宽、电子-空穴对容易复合等问题,掺杂Mg~(2+)对TiO_2进行研究。以Ti(OC_4H_9)_4作为钛源,通过水热法制备Mg~(2+)掺杂TiO_2空盒子(Mg~(2+)@TiO_2)。采用透射电镜、X射线衍射及紫外漫反射对样品进行表征,探讨Mg~(2+)掺杂前后对其结构、性能等方面的影响。通过可见光催化降解有机污染物罗丹明B实验,证明了Mg~(2+)掺杂后的TiO_2纳米材料能够有效降解有机污染物罗丹明B,具有较高的光催化性能。  相似文献   

19.
《应用化工》2022,(7):1173-1179
用Hg Cl2与Zn(Ac O)2和Na2S共沉淀法制备Hg掺杂Zn S(HgXZn1-XS),研究在可见光激发下(λ>420 nm)HgXZn1-XS对以罗丹明B(Rh B)及2,4-二氯苯酚(2,4-DCP)的光催化降解特性。结果表明,HgXZn1-XS(n(Hg)/n(Zn+Hg))为7%(简称C0.07)时,光催化活性最好,在可见光(λ>420 nm)条件下能很好的降解Rh B和2,4-DCP,反应30 h后,Rh B的矿化率和2,4-DCP的降解率分别为39.5%和54.6%。光催化降解Rh B,Hg掺杂Zn S光催化剂具有良好的稳定性,Hg不分解,催化剂重复使用5次后光催化活性几乎没有损失。同时采用辣根过氧化物酶催化反应吸光光度法和苯甲酸荧光分析法跟踪分析测定Rh B降解过程中H2O2和羟基自由基(·OH)的变化量,表明Rh B降解机理涉及·OH历程。  相似文献   

20.
《应用化工》2015,(7):1173-1179
用Hg Cl2与Zn(Ac O)2和Na2S共沉淀法制备Hg掺杂Zn S(HgXZn1-XS),研究在可见光激发下(λ420 nm)HgXZn1-XS对以罗丹明B(Rh B)及2,4-二氯苯酚(2,4-DCP)的光催化降解特性。结果表明,HgXZn1-XS(n(Hg)/n(Zn+Hg))为7%(简称C0.07)时,光催化活性最好,在可见光(λ420 nm)条件下能很好的降解Rh B和2,4-DCP,反应30 h后,Rh B的矿化率和2,4-DCP的降解率分别为39.5%和54.6%。光催化降解Rh B,Hg掺杂Zn S光催化剂具有良好的稳定性,Hg不分解,催化剂重复使用5次后光催化活性几乎没有损失。同时采用辣根过氧化物酶催化反应吸光光度法和苯甲酸荧光分析法跟踪分析测定Rh B降解过程中H2O2和羟基自由基(·OH)的变化量,表明Rh B降解机理涉及·OH历程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号