首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The synergistic influence of lanthanum and cobalt co-doping on room temperature ferromagnetism (RTFM) of TiO2 system is investigated. A series of Ti0.97?xCo0.03LaxO2 nanoparticles were prepared and their structures and properties were systematically studied with X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy, UV–vis spectrophotometer, Raman spectra and magnetic measurement techniques, respectively. Detailed experimental characterizations indicate that the as-prepared La and Co co-doped samples exhibit single anatase phase, and all the samples exhibit strong visible photoluminescence associated with oxygen vacancies and a clear ferromagnetic hysteresis loop, both of which were dramatically enhanced with La and Co co-doping, and the maximum saturation magnetization (Ms) reaches 1.38 emu/g at the La content of 6 mol%. It is speculated that oxygen vacancies modulated by ionic La play an important role in the enhanced RTFM, which can be attributed to the bound magnetic polarons (BMPs) formed via ferromagnetic coupling between two neighboring Co2+ ions mediated by oxygen vacancy (F+ center). Our results present an alternative method to obtain high performance RTFM.  相似文献   

2.
《Ceramics International》2017,43(8):6446-6452
New lead-free inter-growth piezoelectric ceramics, Na0.5Bi8.5-xLaxTi7O27 (NBT-BIT-xLa, 0.00≤x≤1.00), were prepared by the conventional solid-state method. Structural and electrical properties of NBT-BIT-xLa were studied. All the NBT-BIT-xLa samples exhibited a single inter-growth structured phase. XRD and Raman spectroscopy revealed a reduced orthorhombicity, which strongly supports the variation of dielectric and ferroelectric properties. Plate-like grains were found to decrease with the increasing x contents. Impedance spectra analysis indicated that oxygen vacancy defects dominated the contributions to the electrical conductivity. The increased activation energies for dc conductivity evidenced the reduction of oxygen vacancy concentration after La substitution, inducing the enhancement in piezoelectric constant (d33) and remanent polarization (2Pr). The studies of thermal depoling indicated that the optimal d33 of NBT-BIT-0.50La ceramics still remained 22 pC/N at 500 °C, implying that this ceramics could be potentially applied into high temperature devices.  相似文献   

3.
《Ceramics International》2020,46(2):1334-1342
The electrical properties of La2Ti2O7 (LTO) ceramics have been enhanced through the substitution of La3+ ions by Pr3+ ions. Almost all doped Pr3+ ions will get at A - site without causing a change on monoclinic phase of LTO. The average grain size is 17.8 μm for La1.9Pr0.1Ti2O7 ceramics. The relaxation activation energy which is contributed by defect dipoles that are formed from TiO6 oxygen octahedrons’ distortions in grains is 1.6 eV for La1.8Pr0.2Ti2O7 ceramics. This kind of defects will be activated from 520 °C and completely be activated until 650 °C. The piezoelectric coefficient d33 = 3.0 pC/N of La2-xPrxTi2O7 ceramics maintains stable when the Pr3+ doping content x ranging from 0.1 to 0.3.  相似文献   

4.
Structure and microwave dielectric properties were studied in the (1−x)La(Mg1/2Ti1/2)O3–xLa2/3TiO3 system. Ceramics with this composition in the 0⩽x⩽0.5 range were processed from powders obtained by a citrate-based chemical route. Structure of these perovskite solid solutions changed from orthorhombic for x=0.1 and 0.3 to pseudocubic for x=0.5. Microwave and radio frequency measurements revealed increase in permittivity and temperature coefficient of the resonant frequency τf with increasing of La2/3TiO3 content. Close to zero τf value was found near to x=0.5 composition of (1−x)La(Mg1/2Ti1/2)O3x La2/3TiO3.  相似文献   

5.
《Ceramics International》2019,45(10):12742-12756
The Ti excess La2Ti2 (1+x) O7 (x = 0, 0.005, 0.01, 0.02, 0.05, 0.1) piezoelectric ceramics have been prepared by sol-gel technology and solid state synthesis method. Through refinement analysis, the phase structure of the ceramics varies with Ti content. Most monoclinic phase (∼93%) and a handful of orthogonal phase (∼7%) coexist in La2Ti2 (1+0) O7 ceramics. Pure monoclinic phase La2Ti2O7 with space group P21 appears in La2Ti2 (1+0.005) O7 and La2Ti2 (1+0.01) O7 ceramics. Monoclinic phase La2Ti2 O7 and a certain proportion of tetragonal phase La0.67TiO2.87 coexist in La2Ti2 (1+0.02) O7, La2Ti2 (1+0.05) O7 and Ti2 (1+0.1) O7 ceramics. With the excess of Ti content, the monoclinic phase ratio and distortion angles in a-b projection plane of the ceramics increase first and then decrease, which is consistent with the variation tendency of piezoelectric constant d33. The excellent piezoelectric constant for Ti2 (1+0.01) O7 ceramics is 2.8 pC/N.Impedance analysis shows that the conductive mechanisms of all samples include both grain and grain boundary conductivity at temperature range T ≥ 500 °C. The formation of tetragonal phase La0.67TiO2.87 derives from Ti excess in pure monoclinic phase La2Ti2O7. The existence of tetragonal phase La0.67TiO2.87 can obviously increase the capacitance of ceramics at x ≥ 0.05. All prepared piezoelectric La2Ti2 (1+x) O7 ceramics have highly frequency stability and are candidates for ultrahigh temperature piezoelectric application.  相似文献   

6.
《Ceramics International》2022,48(24):36358-36370
Ca3(Ti1-xCox)2O7 ceramics were prepared by a tartaric acid sol-gel method and sintered in an oxygen atmosphere. The introduction of Co2+/Co3+ as acceptor dopants leads to the formation of more oxygen vacancies and defect dipoles in Ca3(Ti1-xCox)2O7 ceramics. Oxygen vacancy and defect dipoles lead to the transition of dielectric, leakage, and ferroelectric behaviors of Ca3(Ti1-xCox)2O7 ceramics. The coexistence of hybrid improper ferroelectricity and ferromagnetism at room temperature in Ca3(Ti1-xCox)2O7 ceramics has been successfully realized through the superexchange interaction of Co–O–Co. Ca3(Ti1-xCox)2O7 ceramics exhibit superior ferroelectricity (the remnant polarization is 3.29 μC/cm2) and enhanced ferromagnetism (the remnant magnetization reaches 6.4×10?3 emu/g). This strategy based on the introduction of transition metal ions with unfilled 3d shells at B sites is an important approach to realize novel room-temperature single-phase multiferroic materials for Ca3Ti2O7-based materials.  相似文献   

7.
《Ceramics International》2020,46(7):8958-8970
A series of charge compensated Ga–V co-doped TiO2 samples (Ti(1-x)(Ga0.5V0.5)xO2) have been synthesized by a modified sol-gel process. X-ray diffraction pattern shows that the anatase to rutile (A→R) onset temperature (TO) shifts to a higher temperature, whereas the complete phase transformation temperature (TC) shifts to a low-temperature region as compared to pure TiO2, due to Ga–V incorporation. Ga–V co-doping helps in the transformation of some smaller sized Ti4+ to a relatively larger Ti3+. In the anatase phase, oxygen content also increases with increasing doping concentration, which along with the larger size of Ti3+ results in lattice expansion and thereby delays the TO. In the rutile phase, oxygen vacancy increases with increasing doping concentration, which results in lattice contraction and accelerates phase transition. Grain growth process is hindered in the anatase phase (crystallites size reduces from ~15 nm (x = 0.00) to 8 nm (0.10)), whereas it is accelerated in the rutile phase as compared to pure TiO2. In both phases bandgap (Eg) reduces to the visible light region (anatase: Eg = 3.16 eV (x = 0.00) to 2.19 eV (x = 0.10) and rutile: 3.08 eV (x = 0.00) to 2.18 eV (x = 0.10)) in all co-doped samples. The tail of the absorption edge reveals lattice distortion and increase of Urbach energy proofs the same due to co-doping. All these changes (grain growth, phase transition, and optical properties) are due to lattice distortion created by the combined effect of substitution, interstitials, and oxygen vacancies due to Ga–V incorporation in TiO2.  相似文献   

8.
Polycrystalline Ni doped Na.5Bi0.5TiO3 samples (Na0.5Bi0.5)Ti1-xNixO3, (x?=?0.5, 0.10, 0.15) have been prepared by solid state reaction. The appearance of the additional peak in X-ray diffraction pattern indicates the ordering of Ti4+ and Ni2+ ions. Polygonal grains are converted into flakes with an increase of Ni concentration. Replacement of Ti4+ by Ni2+ strongly modifies the relative contribution of two peaks in the Raman bands within 200–400?cm?1. Oxygen vacancy is observed in X-ray photoelectron spectrum to maintain charge neutrality due to aliovalent doping. Broad diffuse phase transition centered at the dielectric constant maximum indicates relaxor behaviour. Comparison between impedance and electric modulus spectrum suggests non-Debye relaxation. The ac conductivity follows the power law with the frequency exponent lies 0.52???0.72. The generation of holes by divalent Ni dopant at tetravalent Ti sites enhances optical band gap.  相似文献   

9.
XRD, electron probe wavelength and energy dispersive X-ray analyses were used to reexamine the phase relations in the La2O3–TiO2 system. The diagram was redrawn to include the compound La4Ti3O12 in addition to La4Ti9O24, La2Ti2O7 and La2TiO5. Above 1455°C a cation deficient perovskite La2/3TiO3 is stabilized by a small number of Ti3+ ions and remains stable on cooling in air. The proposed diagram represents a section through the system at the normal oxygen pressure in air at 1 atm, compositions being expressed in terms of the oxide components stable at room temperature.  相似文献   

10.
A typical mixed conductive oxide with high oxygen permeability is La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF), which is applicable to oxygen separation membrane and to cathodes for solid oxide fuel cells. However, Sr and Co included in the LSCF lower its stability when kept at elevated temperatures. La1-xCaxFeO3-δ(LCF) is a good candidate of mixed conductive oxides with no Sr and Co ions. This study investigated systematic details of crystalline phase, electrical conductivity, and oxygen permeability as functions of the Ca content in the LCF. The x = 0.3–0.4 samples with perovskite structure reveal higher electrical conductivity and higher oxygen permeation flux JO2 among the investigated LCF. Particularly, the JO2 of the x = 0.35 and 0.4 are higher than that of the LSCF, proposing that the samples replace the LSCF. Larger specific free volumes in x = 0.3–0.4 are a possible main reason for higher vacancy mobility, resulting in higher JO2.  相似文献   

11.
In the present work, we have used Ph3SnOH as precursor for the synthesis of highly active Ti1−xSnxO2 nanosized photocatalysts. This new preparation route is based on the reaction of TiCl4 with the organometallic compound in an organic medium to yield an amorphous precipitate of TiO2 which contains adsorbed tin species. Subsequent crystallisation of the precipitate under thermal or hydrothermal conditions determines the phase composition (rutile/anatase ratio) and the particle size of the final material. Characterisation data reveal that the incorporation of Sn promotes the anatase to rutile transformation but reduces the size of rutile crystallites. The activity of these samples has been tested for the photocatalytic oxidation of methylcyclohexane (MCH) vapors in an oxygen flow. This hydrocarbon can be considered representative of the volatile organic chemicals (VOC) present in urban atmospheres. The results obtained indicate that the Ti1−xSnxO2 materials obtained under thermal conditions present higher specific photoactivity than the reference material TiO2 P25, especially when the reaction is performed in a stream of humid oxygen. On the other hand, the comparison with undoped TiO2 prepared in similar conditions shows that the incorporation of Sn significantly increases the photocatalytic oxidation rate. High crystallinity and an adequate anatase to rutile ratio seem to be beneficial for the removal of MCH. In contrast, pure rutile Ti1−xSnxO2 nanoparticles prepared by autoclaving the amorphous precursor in HCl shows a quite limited photoactivity, despite its high surface area.  相似文献   

12.
The microstructure and giant dielectric properties of Y3+ and Nb5+ co–doped TiO2 ceramics prepared via a chemical combustion method are investigated. A main rutile–TiO2 phase and dense ceramic microstructure are obtained in (Y0.5Nb0.5)xTi1-xO2 (x = 0.025 and 0.05) ceramics. Nb dopant ions are homogeneously dispersed in the microstructure, while a second phase of Y2O3 particles is detected. The existence of Y3+, Nb5+, Ti4+ and Ti3+ as well as oxygen vacancies is confirmed by X–ray photoelectron spectroscopy and X–ray absorption near edge structure analysis. The sintered ceramics exhibit very high dielectric permittivity values of 104–105 in the frequency range of 40–106 Hz. A low loss tangent value of ≈0.08 is obtained at 40 Hz. (Y0.5Nb0.5)xTi1-xO2 ceramics can exhibit non–Ohmic behavior. Using impedance spectroscopy analysis, the giant dielectric properties of (Y0.5Nb0.5)xTi1-xO2 ceramics are confirmed to be primarily caused by interfacial polarization.  相似文献   

13.
Microwave dielectric properties and thermally stimulated depolarization currents (TSDC) of (1?x)Ba0.6Sr0.4La4Ti4O15xTiO2 (= 0, 0.01, 0.02, 0.05, and 0.1) ceramics were studied. X‐ray diffraction analysis indicates that the specimens show a hexagonal perovskite structure; however, with an increase of x to 0.1, TiO2?δ as a secondary phase can be detected in the ceramics. The variation of TiO2 content has a significant effect on the dielectric properties of (1?x)Ba0.6Sr0.4La4Ti4O15xTiO2 at microwave frequency. The dielectric permittivity of ceramics increases from 44 to 49 with the increase of TiO2 content. The Qf value is in the range of 39 300–53 400 GHz. However, the temperature coefficient of resonant frequency (τf) changes from ?7.5 to–9.4 ppm/°C, and then turns to +3.9 ppm/°C. A near zero τf value can be obtained by tuning the content of TiO2 addition. TSDC was also employed to analysis the extrinsic loss mechanism. Utilizing a fixed polarization condition, the TSDC relaxation peaks are present, which are generated by oxygen vacancies. And the concentration of oxygen vacancies increases with the increase of TiO2 content. It can be concluded that the extrinsic dielectric loss is dominated by microstructure and oxygen vacancy defects.  相似文献   

14.
Good thermal stability in lead-free BaTiO3 ceramics is important for their applications above room temperature. In this study, thermal stable piezoelectricity in lead-free (Ba,Ca)(Ti,Zr)O3 ceramics was enhanced by tailoring their phase transition behaviors. Comparison between (1-x)Ba(Ti0.8Zr0.2)O3-x(Ba0.65Ca0.35)TiO3 and (1-y)Ba(Ti0.8Zr0.2)O3-y(Ba0.95Ca0.05)TiO3 revealed that latter system at y?=?0.80 had much better thermal stable piezoelectric coefficient than the former at x?=?0.45. Both systems crystalized in tetragonal to orthorhombic phase boundary at room temperature. The phase transition temperature and degree of diffusion were adjusted by Ca and Zr ions contents and demonstrated great influence on temperature dependent dielectric permittivity, hysteresis loops, and in-situ domain structures. The improved thermal stability of (1-y)Ba(Ti0.8Zr0.2)O3-y(Ba0.95Ca0.05)TiO3 prepared at y?=?0.80 was linked to its higher paraelectric to ferroelectric phase transition temperature (Tm?=?115.7?°C) and less degree of diffusion (degree of diffusion constant γ?=?1.35). By comparison, (1-x)Ba(Ti0.8Zr0.2)O3-x(Ba0.65Ca0.35)TiO3 prepared at x?=?0.45 revealed Tm?=?81.3?°C and γ?=?1.65. Overall, these findings look promising for future stimulation of phase transition behaviors and design of piezoelectric materials with good thermal stabilities.  相似文献   

15.
Structural, dielectric and magnetic properties of dense Dy-substituted strontium titanate ceramics are investigated. In the Sr1-1.5xDyxTiO3 system, incorporation of Dy onto the Sr site is confirmed by a linear decrease of the lattice parameter up to x = 0.05. Dielectric spectroscopy analysis of Sr1-1.5xDyxTiO3 ceramics reveals four relaxations. Two relaxations observed below 55 K are attributed to dipoles formed by off-centre displacement of Dy3+ ions on the Sr sites. Other two dielectric relaxations found at higher temperatures are attributed to the oxygen vacancy related mechanisms. As result, very high dielectric permittivity of ~33500 at 28 K and of ~9600 around room temperature at moderate dissipation factor of ~0.02 are obtained for Sr0.985Dy0.01TiO3 ceramics, making it a promising material for capacitor electronic applications. Paramagnetic behaviour observed for Sr1-1.5xDyxTiO3 as well as for Sr1-xDy2xTi1-xO3 ceramics indicates impossibility to induce a magnetic order and hence magnetoelectric coupling in strontium titanate by Dy substitution.  相似文献   

16.
Lead-free (Bi0.5Na0.5)1-xSrxBi4Ti4O15 ceramics (x = 0–0.9) are fabricated by solid state reaction process. XRD analysis shows the symmetry divergence from tetragonal to orthorhombic phase accompanied by morphotropic phase boundary with increasing strontium content. Raman spectra confirm the incorporation of strontium into (Bi2.5Na0.5Ti4O13)2- layers. SEM graphs exhibit the typical plate-like morphology with regular variation of grain size and crystallization as strontium increases. Multistage ferroelectric transition is observed with x = 0.2–0.4. Piezoelectric performance measurements present the well thermal stability at x = 0.4. The dielectric properties display a shifting of Curie temperature towards low temperature with increasing strontium ions. It can be due to the crystal lattice distortion by larger radius of strontium and the increasing tolerance factor. ac conductivity and impedance measurements suggest that electron hopping mainly contributes to the low temperature region. Ionization conductivity by oxygen vacancy migration including first-ionization and double-ionization plays the dominating role in the middle and high temperature region. The controllable properties indicate the potential applications for electric devices of (Bi0.5Na0.5)1-xSrxBi4Ti4O15 ceramic.  相似文献   

17.
《Ceramics International》2019,45(14):17502-17511
In this study, (1-x)BaZr0.2Ti0.8O3-(x)(Ba0.7Ca0.3)0.985La0.01TiO3 ((1-x)BZT-(x)BCLT) ceramics, where x = 0.3, 0.4, 0.5, and 0.6, were prepared employing a conventional solid-state sintering technique. X-ray diffraction patterns and dielectric measurements indicated three phase regions at room temperature, including a single rhombohedral (x = 0.3), a phase coexistence of rhombohedral and tetragonal (x = 0.4), and a single tetragonal structure (x ≥ 0.5). X-ray photoemission spectra at the surface of ceramics confirmed the oxidation state of Ba2+, Ca2+, Ti4+, and Zr4+ ions. Upon BCLT addition, the reduction of the average grain size and the presence of the tetragonal structure significantly affected the dielectric, ferroelectric, and piezoelectric properties of these ceramics. With these results, the composition x = 0.3 showed maximum εr′ and εm′, whereas the composition x = 0.5 showed maximum Pr, Ec, d33, kp, and d133 factors. These results suggest a new phase diagram for the (1-x)BZT-(x)BCLT system, which could be tuneable by BCLT concentration and might be useful as an alternative material in dielectric, ferroelectric, and piezoelectric devices.  相似文献   

18.
The appearance of colossal permittivity materials broadened the choice of materials for energy-storage applications. In this work, colossal permittivity in ceramics of TiO2 co-doped with niobium and europium ions ((Eu0.5Nb0.5)xTi1-xO2 ceramics) was reported. A large permittivity (εr ~ 2.01?×?105) and a low dielectric loss (tanδ ~ 0.095) were observed for (Eu0.5Nb0.5)xTi1-xO2 (x?=?1%) ceramics at 1?kHz. Moreover, two significant relaxations were observed in the temperature dependence of dielectric properties for (Eu, Nb) co-doped TiO2 ceramics, which originated from defect dipoles and electron hopping, respectively. The low dielectric loss and high relative permittivity were ascribed to the electron-pinned defect-dipoles and electrons hopping. The (Eu0.5Nb0.5)xTi1-xO2 ceramic with great colossal permittivity is one of the most promising candidates for high-energy density storage applications.  相似文献   

19.
《Ceramics International》2023,49(5):7676-7682
TiO2/CuO composites in different ratios were prepared via a two-step method. X-ray diffraction and transmission electron microscopy results indicated that part of Cu2+ substituted Ti4+ in the TiO2 lattice in the composite, leading to Cu2+-substituted sites in the TiO2 lattice as well as Cu2+ species located in the CuO lattice. Scanning electron microscopy revealed a morphology change in the sample from a three-dimensional structure to a two-dimensional structure while forming an interface between TiO2 and CuO. X-ray photoelectron spectroscopy and Raman spectra showed that there are oxygen vacancies (VO) and Ti3+ in the lattice. UV–vis absorption spectra exhibited a widening of the absorption range and a decrease in the bandgap with increasing amount of CuO in the TiO2/CuO composites. Additionally, the composites exhibited room-temperature ferromagnetism (RTFM), as can be explained by the indirect double-exchange model, which is related to VO and the exchange interaction between the 3d orbitals of Ti3+ and Ti4+ at the interface.  相似文献   

20.
Scanning electron microscopy (SEM), electron-probe microanalysis, energy- and wavelength-dispersive X-ray analysis and X-ray powder diffraction were used to investigate the subsolidus phase relations in the pseudo-ternary La2O3–TiO2–Mn2O3 system in air (oxygen partial pressure pO2=0.21   atm) at 1275 °C. The addition of Mn2O3 to the starting La2O3:3TiO2 mixture led to the formation of a La-deficient perovskite La2/3TiO3 compound. The oxides form two new compounds with the proposed compositions: (i) La1.7Ti13.0Mn6.3O38−x, with a davidite-like crystal structure, and (ii) La49Ti18Mn13O129. There were also several solid solutions existing over a wide range of concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号