首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silicon nitride (Si3N4) ceramics were fabricated by gas pressure sintering (GPS) using four sintering additives: Y2O3–MgO, Y2O3–MgF2, YF3–MgO, and YF3–MgF2. The phase composition, grain growth kinetics, mechanical properties, and thermal conductivities of the Si3N4 ceramics were compared. The results indicated that the reduction of YF3 on SiO2, induced a high Y2O3/SiO2 secondary phase ratio, which improved the thermal conductivity of the Si3N4 ceramics. The depolymerization of F atom reduces the diffusion energy barrier of solute atom and weakens the viscous resistance of anion group, which was beneficial to grain boundary migration. Besides exhibiting a lower grain growth exponent(n = 2.5)and growth activation energy (Q = 587.94 ± 15.35 kJ/mol), samples doped with binary fluorides showed excellent properties, including appreciable thermal conductivity (69 W m−1 K−1), hardness (14.63 ± 0.12 GPa), and fracture toughness (8.75 ± 0.18 MPa m1/2), as well as desirable bending strength (751 ± 14 MPa).  相似文献   

2.
Enhancement of the thermal conductivity of silicon nitride is usually achieved by sacrificing its mechanical properties (bending strength). In this study, β-Si3N4 ceramics were prepared using self-synthesized Y3Si2C2 and MgO as sintering additives. It was found that the thermal conductivity of the Si3N4 ceramics was remarkably improved without sacrificing their mechanical properties. The microstructure and properties of the Si3N4 ceramics were analyzed and compared with those of the Y2O3-MgO additives. The addition of Y3Si2C2 eliminated the inherent SiO2 and introduced nitrogen to increase the N/O ratio of the grain-boundary phase, inducing Si3N4 grain growth, increasing Si3N4 grain contiguity, and reducing lattice oxygen content in Si3N4. Therefore, by replacing Y2O3 with Y3Si2C2, the thermal conductivity of the Si3N4 ceramics was significantly increased by 31.5% from 85 to 111.8Wm−1K−1, but the bending strength only slightly decreased from 704 ± 63MPa to 669 ± 33MPa.  相似文献   

3.
In this work, the effects of Y2O3/MgO ratio on the densification behavior, phase transformation, microstructure evolution, mechanical properties, and thermal conductivity of Si3N4 ceramics were investigated. Densified samples with bimodal microstructure could be obtained by adjusting the ratio of Y2O3/MgO. It was found that a low Y2O3/MgO ratio facilitated the densification of Si3N4 ceramics while a high Y2O3/MgO ratio benefited the phase transformation of Si3N4 ceramics. Best mechanical properties (flexural strength of 875 MPa, and fracture toughness of 8.25 MPa·m1/2, respectively) and optimal thermal conductivity of 98.04W/(m·K) were achieved in the sample fabricated with Y2O3/MgO ratio of 3:4 by sintering at 1900°C for 4 h.  相似文献   

4.
Si3N4 ceramics were sintered at 1900 °C under a nitrogen pressure of 1 MPa using Y2O3-MgO additives. The effects of Y2O3 content (0.5-4 mol%) on microstructure and thermal conductivity were systematically investigated. The increasing Y2O3 content led to increases in amount and viscosity of liquid phase during sintering, which induced a “bimodal to normal” transition in distribution of grain size, decreased Si3N4/Si3N4 contiguity and enhanced devitrification degree of intergranular phase in sintered bulks. Moreover, the decreasing Y2O3 content was found to improve the elimination efficiency of SiO2 impurity during sintering, resulting in lower lattice oxygen content in densified specimens. The microstructure had a strong effect on thermal conductivity. The samples sintered for 3 h gained an increase of thermal conductivity from 65 to 73 W·m-1 K-1 with increasing Y2O3 content, while the samples sintered for 12 h obtained a substantial increase of thermal conductivity from 87 to 132 W·m-1 K-1 with decreasing Y2O3 content.  相似文献   

5.
Si3N4 ceramics were prepared by gas pressure sintering at 1900°C for 12 h under a nitrogen pressure of 1 MPa using Gd2O3 and MgSiN2 as sintering additives. The effects of the Gd2O3/MgSiN2 ratio on the densification, microstructure, mechanical properties, and thermal conductivity of Si3N4 ceramics were systematically investigated. It was found that a low Gd2O3/MgSiN2 ratio facilitated the thermal diffusivity of Si3N4 ceramics while a high Gd2O3/MgSiN2 ratio benefited the densification and mechanical properties. When the Gd2O3/MgSiN2 ratio was 1:1, Si3N4 ceramics obtained an obvious exaggerated bimodal microstructure and the optimal properties. The thermal conductivity, flexural strength, and fracture toughness were 124 W·m−1·k−1, 648 MPa, and 9.12 MPa·m1/2, respectively. Comparing with the results in the literature, it was shown that Gd2O3-MgSiN2 was an effective additives system for obtaining Si3N4 ceramics with high thermal conductivity and superior mechanical properties.  相似文献   

6.
A two-step sintering process was conducted to produce β-Si3N4 ceramics with high thermal conductivity. During the first step, native SiO2 was eliminated, and Y2O3 was in situ generated by a metal hydride reduction process, resulting in a high Y2O3/SiO2 ratio. The substitution YH2 for Y2O3 endow Si3N4 ceramics with an increase of 29% in thermal conductivity from 95.3 to 123 W m−1 K−1 after sintered at 1900°C for 12 hours despite an inferior sinterability. This was primarily attributed to the purified enlarged grains, devitrified grain boundary phase, and reduced lattice oxygen content in the YH2-MgO-doped material.  相似文献   

7.
To improve the thermal conductivity of Si3N4 ceramics, elimination of grain-boundary glassy phase by post-sintering heat-treatment was examined. Si3N4 ceramics containing SiO2–MgO–Y2O3-additives were sintered at 2123 K for 2 h under a nitrogen gas pressure of 1.0 MPa. After sintering, the SiO2 and MgO could be eliminated from the ceramics by vaporization during post-sintering heat-treatment at 2223 K for 8 h under a nitrogen gas pressure of 1.0 MPa. Thermal conductivity of 3 mass% SiO2, 3 mass% MgO and 1 mass% Y2O3-added Si3N4 ceramics increases from 44 to 89 Wm−1 K−1 by the decrease in glassy phase and lattice oxygen after the heat-treatment. Relatively higher fracture toughness (3.8 MPa m1/2) and bending strength (675 MPa) with high hardness (19.2 GPa) after the heat-treatment were achieved in this specimen. Effects of heat-treatment on microstructure and chemical composition were also observed, and compared with those of Y2O3–SiO2-added and Y2O3–Al2O3-added Si3N4 ceramics.  相似文献   

8.
《Ceramics International》2022,48(13):18294-18301
Si3N4 ceramics were prepared using novel two-step sintering method by mixing α-Si3N4 as raw material with nanoscale Y2O3–MgO via Y(NO3)3 and Mg(NO3)2 solutions. Si3N4 composite powders with in situ uniformly distributed Y2O3–MgO were obtained through solid–liquid (SL) mixing route. Two-step sintering method consisted of pre-deoxidization at low temperature via volatilization of in situ-formed MgSiO3 and densification at high temperature. Variations in O, Y, and Mg contents in Si3N4–Y2O3–MgO during first sintering step are discussed. O and Mg contents decreased with increasing temperature because SiO2 on Si3N4 surface reacted with MgO to form low-melting-point MgSiO3 compound, which is prone to volatilize at high temperature. By contrast, Y content hardly changed due to high-temperature stability of Y–Si–O–N quaternary compound. In the second sintering step, skeleton body was densified, and the formation of Y2Si3O3N4 secondary phase occurred simultaneously. Two-step sintered Si3N4 ceramics had lower total oxygen content (1.85 wt%) than one-step sintered Si3N4 ceramics (2.51 wt%). Therefore, flexural strength (812 MPa), thermal conductivity (92.1 W/m·K), and fracture toughness (7.6 MPa?m1/2) of Si3N4 ceramics prepared via two-step sintering increased by 28.7%, 16.9%, and 31.6%, respectively, compared with those of one-step sintered Si3N4 ceramics.  相似文献   

9.
SiC ceramics sintered with yttria were successfully joined without an interlayer by conventional hot pressing at lower temperatures (2000–2050 °C) compared to those of the sintering temperatures (2050–2200 °C). The joined SiC ceramics sintered with 2000 ppm Y2O3 showed almost the same thermal conductivity (˜198 Wm−1 K−1), fracture toughness (3.7 ± 0.2 MPa m1/2), and hardness (23.4 ± 0.8 GPa) as those of the base material, as well as excellent flexural strength (449 MPa). In contrast, the joined SiC ceramics sintered with 4 wt% Y2O3 showed very high thermal conductivity (˜204 Wm−1 K−1) and excellent flexural strength (˜505 MPa). Approximately 16–22% decreases in strength compared to those of the base SC materials were observed in both joined ceramics, due to the segregation of liquid phase at the interface. This issue might be overcome by preparing well-polished and highly flat surfaces before joining.  相似文献   

10.
Heat dissipation material with programmable anisotropic property is very challenging, yet can realize the controllable thermal diffusion for heating device. In this work, anisotropic Si3N4 ceramics with oriented grains are prepared to adjust and improve the mechanical and thermal properties under the applied stress field by rolling film forming technology. Through the design of the sintering aids in the process of liquid-phase sintering, the orientation degree of the Si3N4 grains is programmable as well as the mechanical property and the thermal property of the Si3N4 ceramics. As a consequence, the obtained Si3N4 ceramics show significant anisotropy in mechanical properties and thermal conductivity. The typical fracture toughness and thermal conductivity along the grain orientation direction are 10.6 MPa⋅m1/2 and 45.45 W/(m⋅K) while they are 4.5 MPa⋅m1/2 and 66.42 W/(m⋅K) in the direction perpendicular to the oriented grain, respectively. This grain orientation method paves the way for the thermal performance design and the production of programmable heat dissipation material.  相似文献   

11.
The effect of YH2 on densification, microstructure, and thermal conductivity of Si3N4 ceramics were investigated by adjusting the amount of YH2 in the range of 0–4 wt% using a two-step sintering method. Native SiO2 was eliminated, and Y2O3 was in situ formed by a metal hydride reduction reaction, resulting in various Y2O3/SiO2 ratios. Full densification of YH2-doped samples could be achieved after sintering at 1900 °C for 4 h. The Y2O3/SiO2 ratio had a significant influence on the composition of crystalline secondary phases. Besides, the increased Y2O3/SiO2 ratio is conducive not only to the grain growth but also to the reduction of activity of SiO2 in the liquid phase, resulting in enlarged purified grains, reduced volume fraction of intergranular phases and increased Si3N4-Si3N4 contiguity. Ultimately, the thermal conductivity increased by 29 % from 95.3 to 123.0 W m−1 K−1 after sintering at 1900 ℃ for 12 h by the substitution of Y2O3 with YH2.  相似文献   

12.
《Ceramics International》2020,46(17):27175-27183
The fabrication of silicon nitride (Si3N4) ceramics with a high thermal conductivity was investigated by pressureless sintering at 1800 °C for 4 h in a nitrogen atmosphere with MgO and Y2O3 as sintering additives. The phase compositions, relative densities, microstructures, and thermal conductivities of the obtained Si3N4 ceramics were investigated systemically. It was found that at the optimal MgO/Y2O3 ratio of 3/6, the relative density and thermal conductivity of the obtained Si3N4 ceramic doped with 9 wt% sintering aids reached 98.2% and 71.51 W/(m·K), respectively. EDS element mapping showed the distributions of yttrium, magnesium and oxygen elements. The Si3N4 ceramics containing rod-like grains and grain boundaries were fabricated by focused ion beam technique. TEM observations revealed that magnesium existed as an amorphous phase and that yttrium produced a new secondary phase.  相似文献   

13.
Fully dense β-SiAlON ceramics with excellent mechanical properties and good thermal conductivity were fabricated by two-stage spark plasma sintering (SPS) processes without and with applying pressure respectively, using α-Si3N4 powder and 6 Al2O3-3 AlN-6 Y2O3 (in wt.%, label with 636), 424 and 422 additives. In the first stage SPS process without pressure, the relative dense β-SiAlON ceramics with interlock microstructures of elongated grains and density of 3.14˜3.18 g cm−3, hardness of 14.00˜14.82 GPa and fracture toughness of 6.00˜6.63 MPa m1/2 were obtained by sintering at about 1600 °C for 20 min. In the second stage SPS process at about 1425 °C for 5 min under pressure of 24 MPa, the fully dese β-SiAlON ceramics with density of 3.22˜3.24 g cm−3, high hardness of 15.68˜15.95 GPa, high fracture toughness of 6.38˜7.03 MPa m1/2 and thermal conductivity of 13.5˜19.6 Wm-1K-1 were obtained. The reaction between the samples and the graphite mold can be avoided in this fabrication method.  相似文献   

14.
A variety of combinations of Y2O3 and MgO were used as additives in preparing Si3N4 ceramics by the sintering of reaction-bonded silicon nitride (SRBSN) method. By varying the amount of Y2O3 in the range of 0-5 mol% and that of MgO in the range of 0-8 mol%, the effects of Y2O3 and MgO additives on nitridation and sintering behaviors as well as thermal conductivity were studied. It was found that appropriate amount and combination of Y2O3 and MgO additives were essential for attaining full densification and achieving high thermal conductivity. The sample doped with 2.5 mol% of Y2O3 and 5 mol% of MgO attained a thermal conductivity of 128 Wm−1K−1 when sintered at 1900°C for 6 hours, and the sample doped with 2 mol% of Y2O3 and 4 mol% of MgO achieved a thermal conductivity of 156 Wm−1K−1 when sintered for 24 hours.  相似文献   

15.
Si3N4 ceramic was densified at 1900°C for 12 hours under 1 MPa nitrogen pressure, using MgO and self‐synthesized Y2Si4N6C as sintering aids. The microstructures and thermal conductivity of as‐sintered bulk were systematically investigated, in comparison to the counterpart doped with Y2O3‐MgO additives. Y2Si4N6C addition induced a higher nitrogen/oxygen atomic ratio in the secondary phase by introducing nitrogen and promoting the elimination of SiO2, resulting in enlarged grains, reduced lattice oxygen content, increased Si3N4‐Si3N4 contiguity and more crystallized intergranular phase in the densified Si3N4 specimen. Consequently, the substitution of Y2O3 by Y2Si4N6C led to a great increase in ~30.4% in thermal conductivity from 92 to 120 W m?1 K?1 for Si3N4 ceramic.  相似文献   

16.
Silicon nitride ceramics were pressureless sintered at low temperature using ternary sintering additives (TiO2, MgO and Y2O3), and the effects of sintering aids on thermal conductivity and mechanical properties were studied. TiO2–Y2O3–MgO sintering additives will react with the surface silica present on the silicon nitride particles to form a low melting temperature liquid phase which allows liquid phase sintering to occur and densification of the Si3N4. The highest flexural strength was 791(±20) MPa with 12 wt% additives sintered at 1780°C for 2 hours, comparable to the samples prepared by gas pressure sintering. Fracture toughness of all the specimens was higher than 7.2 MPa·m1/2 as the sintering temperature was increased to 1810°C. Thermal conductivity was improved by prolonging the dwelling time and adopting the annealing process. The highest thermal conductivity of 74 W/(m∙K) was achieved with 9 wt% sintering additives sintered at 1810°C with 4 hours holding followed by postannealing.  相似文献   

17.
《Ceramics International》2022,48(15):21832-21845
A variety of combinations of YF3 and MgF2 were used as sintering aids in the fabrication of Si3N4 ceramics via gas pressure sintering (GPS). The synergistic effects of YF3 and MgF2 on the liquid viscosity, mechanical properties, thermal conductivities, and grain growth kinetics of the Si3N4 ceramics were investigated. The results showed that appropriately adjusting the YF3/MgF2 ratio could decrease liquid viscosity, reducing the diffusion energy barrier of the solute atom and promoting mass transfer. Meanwhile, the chemical bonding strength in the grain boundary complexions formed by the metal cations also influenced grain boundary migration. Samples doped with 4 mol% YF3 and 2 mol% MgF2 achieved the lowest grain growth exponent (n = 2.9) and growth activation energy (Q = 616.7 ± 16.5 kJ mol?1) as well as the highest thermal conductivity (83 W m?1 K?1) and fracture toughness (8.82 ± 0.13 MPa m1/2).  相似文献   

18.
《Ceramics International》2023,49(13):21815-21824
Silicon nitride (Si3N4) ceramics, with different ratios of fine and coarse α-Si3N4 powders, were prepared by spark plasma sintering (SPS) and heat treatment. Further, the influence of coarse α-Si3N4 powder on densification, microstructure, mechanical properties, and thermal behavior of Si3N4 ceramics was systematically investigated. Compared with fine particles, coarse particles exhibit a slower phase transition rate and remain intact until the end of SPS. The remaining large-sized grains of coarse α-Si3N4 induce extensive growth of neighboring β-Si3N4 grains and promote the development of large elongated grains. Noteworthy, an appropriate number of large elongated grains distributed among fine-grained matrix forms bimodal microstructural distribution, which is conducive to superior flexural strength. Herein, Si3N4 ceramics with flexural strength of 861.34 MPa and thermal conductivity of 65.76 W m−1 K−1 were obtained after the addition of 40 wt% coarse α-Si3N4 powder.  相似文献   

19.
Thermal conductivity of Si3N4 containing large β-Si3N4 particles as seeds for grain growth was investigated. Seeds addition promotes growth of β-Si3N4 grains during sintering to develop the duplex microstructure. The thermal conductivity of the material sintered at 1900 °C improved up to 106 W m−1 K−1, although that of unseeded material was 77 Wm−1 K−1. Seeds addition leads to reduction of the sintering temperature with developing the duplex microstructure and with improving the thermal conductivity, which benefits in terms of production cost of Si3N4 ceramics with thermal conductivity. ©  相似文献   

20.
《Ceramics International》2018,44(18):22412-22420
In this work, Si3N4 ceramics were fabricated through an aqueous gelcasting method using a low–toxic monomer called N, N–dimethylacrylamide (DMAA) followed by gas pressure sintering at 1850 °C for 2 h under 6 MPa N2 atmosphere. The effect of solid loading on performance of slurries, green and sintered bodies was investigated systematically. The results show that the slurries with a solid loading as high as 50 vol% (viscosity 0.17 Pa.s at 100 s–1) were achieved. With the increase of solid loading (30–50 vol%), the green bodies exhibited a monotonically decreased, however high enough in general, flexural strength of 16.50–11.52 MPa, which was comparable to that of widely–used neurovirulent acrylamide (AM) gelling system. In regard to the sintered bodies, increasing solid loading significantly promoted sintering and improved mechanical properties and thermal conductivity as a result of the increased density, bimodal distribution structure, as well as suitable interfacial bonding strength. The best performance parameters of Si3N4 ceramics, bulk density of 3.25 g/cm3, apparent porosity of 0.67%, flexural strength of 898.92 MPa, fracture toughness of 6.42 MPa m1/2, Vickers hardness of 2.81 GPa, and thermal conductivity of 34.69 W m–1 K–1, were obtained at 50 vol% solid loading. This work renders low–toxic DMAA gelling system promising prospect in preparation of high–performance Si3N4 ceramics by gelcasting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号