首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zr0.8Sn0.2TiO4 (ZST) ceramics were prepared by choline chloride-malonic acid deep eutectic solvent (Cm-DES) route using analytical-grade raw materials such as Zr(CH3COO)4, SnCl2·2H2O, titanium isopropoxide, and so on. The effects of SnCl2 concentration and Ti source on phase composition, sinterability, and microwave dielectric properties of ZST ceramics processed by Cm-DES routes were investigated. Single-phase ZST powders were processed by Cm-DES routes calcined at 450 °C, and no second phase was detected in all the ceramics. The sintering temperature of ZST ceramics processed by Cm-DES routes was seriously decreased to 1350 °C. Excellent dielectric properties (εr = 38.0, Q×f = 44,500 GHz, and τf = 1.9 ppm/°C) were obtained when 0.6 mol/L SnCl2 and titanium isopropanol were employed. These results give the underlying enlightenments needed for cost-saving and low energy consumption fabrication of microwave dielectric ceramics.  相似文献   

2.
The dielectric properties of SrTiO3 ceramics sintered in nitrogen (N2) exhibit a weak temperature- and frequency-dependent giant permittivity (>104) as well as a very low dielectric loss (mostly < 0.02) over a broad temperature range from −100 to 200 °C. Based on the results of ac conductivity and structural analysis, the giant permittivity and low dielectric loss were due to the fully ionized oxygen vacancies and giant defect-dipoles. When further sintering these ceramics in air, the materials exhibit a large temperature- and frequency-dependent high dielectric loss, which were due to the ionization and motion of oxygen vacancies.  相似文献   

3.
Di-phase composite ceramics based on BaTiO3 with 5?vol% of Ag filler have been prepared by sintering the mixture of powders at temperatures above the silver melting point (1000?°C–1300?°C/2?h). As predicted by finite element calculations, the addition of metallic particles should produce a field concentration in some regions of the BaTiO3 matrix and therefore, an enhanced dielectric response with respect to pure BaTiO3. The role of oxygen vacancies on the dielectric relaxation mechanisms of Ag-BaTiO3 composites has been investigated. The sintering temperature of 1200?°C provided optimized ceramics with excellent dielectric properties, i.e. with low losses (tanδ?<?3%) and room temperature permittivity measured at 50?kHz exceeding 6500 (and above 13,000 at the Curie temperature), as result of a good densification (94% relative density) and a synergy effect of the metallic particles inclusions and ceramic grain size in the range of ≈1?μm, where BaTiO3 has a well-known maximum of its permittivity.  相似文献   

4.
《Ceramics International》2022,48(14):20245-20250
There has been extensive research on microwave dielectric materials considering their application in 5G and 6G communication technologies. In this study, the sintering temperature range of Mg2TiO4–CeO2 (MT-C) ceramics was broadened using a composite of CeO2 and Mg2TiO4 ceramics, and their microwave dielectric performance was stabilized. Low-loss MT-C composite ceramics were prepared using the solid-phase reaction method, and their microwave dielectric properties, microscopic morphologies, and phase structures were investigated. The proposed MT-C ceramics contained Mg2TiO4 and CeO2 phases; their average grain size was maintained at 2–4 μm in the sintering temperature range of 1275–1425 °C, and the samples were uniformly dense without porosity. The cross-distribution of Mg2TiO4 and CeO2 grains in the samples inhibited the growth of ceramic grains, providing uniform and dense surfaces. The dielectric loss of MT-C ceramics remained constant in the temperature range of 1300–1425 °C at 9 × 10?4 (8.45 ≤ f ≤ 8.75 GHz). As opposed to the base material, MT-C ceramics are advantageous owing to their wide sintering temperature range and the stable microwave dielectric properties, and there are suitable substrate materials for further industrial applications.  相似文献   

5.
Undoped TiO2 exhibited deterioration in microwave (MW) dielectric loss as it reached its maximum density due to the reduction of Ti4+ to Ti3+ causing oxygen vacancies at high sintering temperatures. By adding small amounts of acceptor dopants with ionic radii between 0.5 and 0.95 Å, reduction during sintering was suppressed. The upper limit of ionic radius was discrete with almost no observed effect using dopants >0.96 Å ionic radius. In addition, the microwave dielectric loss of undoped TiO2 could be improved by annealing at 1500 °C for 10 h in air, presumably as a result of re-oxidation. High loss samples exhibited a dark ‘core’ to the naked eye which was absent in low loss ceramics. Transmission electron microscopy revealed that grains in the dark core contained planar defects attributed to the condensation of O vacancies onto specific crystallographic planes, in a manner similar to that observed in Magnelli phases.  相似文献   

6.
New high‐quality microwave dielectric ceramics Mg2NdNbO6 were prepared by conventional solid‐state sintering method. The phases, micro‐structures and microwave dielectric properties of Mg2NdNbO6 ceramics were investigated at sintering temperature in the range of 1275°C‐1400°C. The X‐ray diffraction patterns showed that the peaks of the compounds were attributed to two phases, including the main crystalline phase of NdNbO4 that was indexed as the monoclinic phase and MgO as the second phase. Well‐developed microstructures of Mg2NdNbO6 ceramics can be achieved, and the grain size reached the maximum value (1.63 μm) at 1375°C. As the sintering temperature increased, the dielectric constant, temperature coefficient of resonant frequency and apparent density remained almost unchanged, however, the significant change in the quality factor was observed. At 1375°C, Mg2NdNbO6 ceramics possessed excellent microwave dielectric properties: εr = 16.22, Q × f = 116 000 GHz and τf = ?30.96 ppm/°C.  相似文献   

7.
Colossal permittivity (ε′ = 301,484 at room temperature and 1 kHz) of barium titanate was induced in ceramics synthesized using the microwave sintering method. Three different sintering processes (conventional, spark plasma, and microwave) were performed to better understand colossal permittivity in sintered barium titanate. The dielectric permittivity measurements revealed that the appearance of colossal permittivity has strong dependence on the sintering temperature and atmosphere, and less on the grain size of the sintered ceramics. However, the as‐sintered barium titanate samples produced by microwave sintering show high dielectric loss (tanδ > 1) consistent with oxygen reduction during the microwave sintering process and consequent accumulation of oxygen vacancies and associated charge carriers at the grain boundary. Since the highly conductive state of as‐sintered ceramics precludes their use in dielectric applications, thermal annealing at different conditions was performed to recover insulating characteristics. Microwave‐sintered barium titanate with post annealing process (950°C for 12 h in air) showed low dielectric loss (tanδ = 0.045) at room temperature and 1 kHz, while still showing a much higher permittivity (ε′ = 36,055) than conventionally sintered barium titanate (ε′ = 3500).  相似文献   

8.
In this study, the dielectric properties of SrTiO3 ceramics prepared by plasma-activated sintering (PAS) were investigated. One of the striking findings is that the material exhibits giant room temperature permittivity (k∼3.5 × 104) and low dielectric loss (∼0.05) at 1 kHz, with the permittivity exceeding that of the conventionally prepared SrTiO3(ST) ceramics (k∼300) by two orders of magnitude. The enhancement of the polarizability was caused by the high concentration of defect dipoles. In this paper, two dielectric relaxation modes of the PAS ceramics below 0°C have been mainly discussed. One dielectric relaxation mode showed higher activation energy than that of the dielectric peak in the same temperature range for the conventional SrTiO3-based ceramics. This mode was sensitive to humidity, and the strength of this mode was associated with the oxygen vacancies concentration in the ceramics. The other mode exhibited abnormal slowing down of relaxation rate with increasing temperature, which is contrary to the typical dielectric relaxation behavior, and the anomaly persisted over a narrow temperature range. Both modes were observed at the same interface between the grain and grain boundaries.  相似文献   

9.
La1‐xZnxTiNbO6‐x/2 (LZTN‐x) ceramics were prepared via a conventional solid‐state reaction route. The phase, microstructure, sintering behavior, and microwave dielectric properties have been systematically studied. The substitution of a small amount of Zn2+ for La3+ was found to effectively promote the sintering process of LTN ceramics. The corresponding sintering mechanism was believed to result from the formation of the lattice distortion and oxygen vacancies by means of comparative studies on La‐deficient LTN ceramics and 0.5 mol% ZnO added LTN ceramics (LTN+0.005ZnO). The resultant microwave dielectric properties of LTN ceramics were closely correlated with the sample density, compositions, and especially with the phase structure at room temperature which depended on the orthorhombic‐monoclinic phase transition temperature and the sintering temperature. A single orthorhombic LZTN‐0.03 ceramic sintered at 1200°C was achieved with good microwave dielectric properties of εr~63, Q×f~9600 GHz (@4.77 GHz) and τf ~105 ppm/°C. By comparison, a relatively high Q × f~80995 GHz (@7.40 GHz) together with εr~23, and τf ~?56 ppm/°C was obtained in monoclinic LTN+0.005ZnO ceramics sintered at 1350°C.  相似文献   

10.
Microstructural effects on the microwave dielectric properties of (Ba0.4Sr0.6)TiO3 (BST) polycrystalline ceramics were investigated, focusing on the grain size. Sintering temperatures between 1350°C and 1500°C have a strong effect on the permittivity (880 < εr < 990), quality factor (570 GHz < Q×f < 1150 GHz), and temperature coefficient of resonant frequency (3920 ppm/°C < τf < 4560 ppm/°C) at microwave frequency (≈1.4 GHz). The tunable permittivity characteristics (measured at 10 kHz), were also found to be sensitive to the sintering process, demonstrating the possibility of tailoring material property by designed processing. In addition, the effect of the sintering process on grain structure was investigated by XRD calculation and Raman scattering characterization. Less confined phonons were believed to contribute to the enhanced microwave performance as an intrinsic effect (grain size effect), for samples with higher sintering temperature and longer dwell time. On the contrary, the macroscopic properties tend to saturate (or deteriorate), for samples at intensified sintering condition, being thought to be dominated by the extrinsic factors (such as the abundant defects in large grains), as confirmed by the SEM observations.  相似文献   

11.
《Ceramics International》2017,43(8):6403-6409
Recently, colossal permittivities (~105) and low loss factors (<0.1) were reported in (Nb+In) co-doped rutile TiO2 ceramics, which have attracted considerable attention. In this work, (Nb,In,B) co-doped rutile TiO2 ceramics were investigated for achieving temperature- and frequency- stable dielectric properties in TiO2 based colossal dielectric ceramics. The (Nb,In,B) co-doped rutile TiO2 ceramics were prepared by conventional solid-state reaction method. The microstructures, dielectric properties and complex impedance of 1 mol.% (Nb+In) co-doped rutile TiO2 (TINO) and xwt% B2O3 (x=0.5, 1, 2 and 4) doped TINO were systematically investigated and compared. It was found that by doping B2O3 the sintering temperature of TINO ceramics can be reduced by 100 °C. Meanwhile, the dielectric loss of TINO ceramics was decreased by doping B2O3. In the 2wt% B2O3 doped TINO ceramics, the dielectric permittivity kept a high value of >2.0×105 and the dielectric loss was lower than 0.1 in a frequency range of 102−105 Hz and a temperature range of 25–200 °C.  相似文献   

12.
《Ceramics International》2020,46(14):22460-22465
Borates are promising candidates as dielectric substrate materials in low temperature cofired ceramics technology (LTCC) due to their relative low sintering temperatures and relative permittivities compared to their counterparts. However, synthesizing borates having single-phase is still challenging because of the volatility and hydrophilicity of boron resources. In this work, a compositional design was utilized to synthesize single-phase LiBGeO4 ceramics over a broad temperature range from 600 to 840 °C. Radio-frequency dielectric behaviours featured a strong temperature dependence, especially at high temperatures (>400 °C), which is related to the thermally activated polarizations. LiBGeO4 ceramic sintered at 820 °C has optimum microwave dielectric properties with the relative permittivity (εr) of 6.28, a quality factor (Q × f) of 21,620 GHz, and a temperature coefficient of resonance frequency (τf) of -88.7 ppm/°C. LiBGeO4 also showed chemical inertness when cofired with silver (Ag), provided an evidence for its utilization in LTCC technology. Overall, this work provides a strategy for facile synthesis of phase pure borates, via the proposed two-step process to obtain stable boron resources.  相似文献   

13.
Microwave dielectric ceramic powder of 0.95(Mg0.95Zn0.05)TiO3-0.05CaTiO3 (MCT) has been prepared by solid-state reaction method through single-step calcination at 1150 °C. The green bodies prepared from the calcined powder have been sintered by conventional, susceptor-aided, and hybrid microwave sintering techniques followed by annealing. XRD of calcined and sintered ceramics show (Mg,Zn)TiO3 as a major phase with CaTiO3 as a minor secondary phase. Fractographs of fired ceramics obtained by SEM show similar features in conventional and hybrid microwave types of sintering. Microwave dielectric properties such as relative permittivity(εr), temperature coefficient of resonant frequency(τf), and unloaded quality factors (Qu) for conventional sintered at 1325 °C for 4 h are—εr~19.8, τf< –6 ppm/°C and Qu.f 69,600 GHz at 6 GHz. Ceramics obtained through susceptor-aided microwave sintering at 1325 °C for 4 h show poor fired density. But ceramics got by microwave-hybrid sintering (resistive + microwave) at the same temperature show εr~20.6, Qu.f~81,600 GHz at 6 GHz and τf~?6.9 ppm/°C. The effect of hybrid microwave sintering on the dielectric properties of MCT ceramics is found to be more subtle than microstructural.  相似文献   

14.
This study aims to fabricate Li2Mg3TiO6 ceramics with ultrafine grains using a novel cold sintering process combined with a post-annealing treatment at a temperature <?950?°C. In this study, phase composition, sintering behavior, microstructure evolution, and microwave dielectric properties of the resultant nanocrystalline ceramics were investigated for the first time. The as-compacted green pellets at 180?°C yielded a high relative density of ~ 90% and the ceramics that were post-sintered over a broad temperature range (800–950?°C) possessed highly dense microstructure with a relative density of ~ 96%. The average grain size varied from 100 to 1200?nm for the samples sintered at 800–950?°C. Furthermore, the quality (Q × f) values of the obtained specimens exhibited a strong positive dependency on the grain size, which increased from 17,790 to 47,960?GHz for grain sizes ranging between 100 and 1200?nm, while the dielectric permittivity (εr) and temperature coefficient of the resonant frequency (τf) values did not undergo any significant changes over this range of grain size.  相似文献   

15.
Low-temperature-fired microwave ceramics are key to realizing the integration and miniaturization of microwave devices. In this study, a facile wet chemical method was applied to synthesize homogenous nano-sized CaF2 powders for simultaneously achieving low-temperature sintering and superior microwave dielectric properties. Pure CaF2 ceramics sintered at 950 °C for 6 h with good microwave dielectric properties (εr = 6.22, Q×f = 36,655 GHz, and τf = ?102 ppm/°C) was achieved. The microwave dielectric properties of the CaF2 ceramics were further improved by introducing LiF as a sintering aid. The sintering temperature of CaF2-based ceramics was effectively lowered from 950 °C to 750 °C with 10 wt% LiF doping, and excellent microwave dielectric properties (εr = 6.37, Q×f = 65,455 GHz, and τf = ?71 ppm/°C) were obtained.  相似文献   

16.
Microwave dielectric ceramics with low dielectric permittivities (?r<6), high quality values and temperature sable resonator frequencies are strongly desired with the development of millimeter wave communication. In this paper, a compositional design for low-k materials was proposed from the point view of crystal chemistry. AlPO4-BPO4-SiO2 glass-ceramics were prepared by traditional solid state and sol-gel processes, respectively. The sintering behaviors, phase assemblages, microstructures and microwave dielectric properties of AlPO4-BPO4-SiO2 ternaries have been studied. The solid solubility, glass forming ability and crystallization of the AlPO4–BPO4–SiO2 ternaries can be understood by considering the structural flexibility via the degree of ionicity i of the bonds in the ternaries. All compositions demonstrate low dielectric permittivity less than five and negative temperature coefficient of resonant frequency. Maximum Q × f value could be obtained for the 0.45AlPO4–0.45BPO4–0.10SiO2 composition prepared by sol-gel process after sintering at 1175 °C/2 h: ?r~4.16, Q × f~59,519.  相似文献   

17.
In this work, a sintering route named cold sintering assisted two step sintering process (CSP-TS) is presented to prepare rutile TiO2 ceramics with submicron grain sizes. Cold sintering process at 300 °C with tetrabutyl titanate and water as the liquid phase yields a ‘green body’ with a relatively high density of ~80 %, and finally dense (98.5–99.8 %) rutile TiO2 ceramics with grain sizes of ~600 nm can be obtained in the second sintering process at 950?1000 °C. The microstructural analysis with SEM and TEM indicates that the CSP-TS samples sintered at 950 °C have an obvious phenomenon of recrystallization, accompanying by a decrease of amorphous phases and a formation of clear grain boundaries. Besides, the rutile TiO2 ceramics prepared by CSP-TS possess excellent microwave dielectric properties with relative permittivity of 92.0–98.4 and Q × f values of 27,800?31,900 GHz. Therefore, it is feasible to utilize CSP-TS to prepare ceramics with small grain sizes at low sintering temperatures.  相似文献   

18.
New generation wireless communication systems require characterisations of dielectric permittivity and loss tangent at microwave and terahertz bands. La2Ti2O7 is a candidate material for microwave application. However, all the reported microwave dielectric data are average value from different directions of a single crystal, which could not reflect its anisotropic nature due to the layered crystal structure. Its dielectric properties at the microwave and terahertz bands in a single crystallographic direction have rarely been reported. In this work, a single crystal ferroelectric La2Ti2O7 was prepared by floating zone method and its dielectric properties were characterized from 1 kHz to 1 THz along one single direction. The decrease in dielectric permittivity with increasing frequency is related to dielectric relaxation from radio frequency to microwave then to terahertz band. The capability of characterizing anisotropic dielectric properties of a single crystal in this work opens the feasibility for its microwave and terahertz applications.  相似文献   

19.
Sr1+xSm2Al2O7+x (0 ≤ x ≤ 0.05) ceramics were prepared by a conventional solid-state reaction method. Slight Sr2+ nonstoichiometry dramatically enhanced the microwave dielectric performance of the ceramics. Compared with the stoichiometric material, Sr-deficient ceramics show greatly enhanced microwave dielectric properties. For x = 0.03, the ceramics exhibited good microwave dielectric properties of εr = 18.31, Q × f = 78,000 GHz and τf = 2.28 ppm/°C. ZnO and LiF sintering aids were added to the ceramic to reduce the presintering temperature and enhance the microwave dielectric properties of the ceramics. After 0.25 wt% ZnO and 0.25 wt% LiF were added, the ceramics exhibited microwave dielectric properties of εr = 19.40, Q × f = 81,400 GHz and τf = 3.27 ppm/°C.  相似文献   

20.
《Ceramics International》2022,48(5):6016-6023
In the preparation process for advanced ceramics, how to reduce the sintering temperature, shorten the processing time and refine grains is the key to obtaining high-performance ceramic materials. The flash sintering (FS) provides an effective method to solve this issue. Here, (Zr + Ta) co-doped TiO2 colossal permittivity ceramics were successfully fabricated by conventional sintering (CS) and flash sintering under electric fields from 500 V/cm to 800 V/cm. The flash behavior, sintered crystal structure and microstructure, dielectric properties, and varistor characteristics were systematically investigated. The effects of the applied electric fields on the above behaviors were discussed. The results show that flash sintering can reduce the sintering temperature by 200 °C, decrease the processing time by 10 times and reduce grain sizes in TiO2 ceramics. All sintered samples were single rutile structures. Flash sintering led to similar electrical properties to conventional sintering. In the flash-sintered samples, with increasing the electric field, the permittivity of co-doped TiO2 ceramics increased at a frequency of 103–104 Hz. The flash-sintered sample under an electric field of 800 V/cm possessed the best comprehensive properties, a dielectric permittivity of >105, a dielectric loss of ~0.77 at 103 Hz, and a nonlinear coefficient of 5.2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号