首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
增强耐磨PA66复合材料的研制及应用   总被引:1,自引:1,他引:0  
以玻璃纤维(GF)作为增强体系,加入硅酮粉、增容剂和其它助剂制备了增强耐磨尼龙(PA)66复合材料.探讨了增容剂、硅酮粉对复合材料性能的影响.结果表明,当PA66增强料、增容剂、硅酮粉质量比为100∶6∶1时,制备的复合材料具有较好的力学性能和耐磨性能.该增强耐磨PA66复合材料已广泛应用于织布梭的生产,性能满足行业标准要求.  相似文献   

2.
制备了一系列不同组成的再生PTFE微粉填充聚四氟乙烯的混合物,对材料的力学、摩擦性能进行了研究。结果表明,PTFE微粉(细粉)在加入5~7份时,复合材料的力学和耐磨损性能最好,PTFE微粉(粗粉)不利于材料的外观和力学性能。微观形态研究发现,细粉与PTFE树脂的相容性较好,粗粉的相容性较差。  相似文献   

3.
采用双螺杆挤出造粒制备了不同固体润滑剂改性尼龙66(PA66)的复合材料,复合材料含30%玻纤(GF),对复合材料的力学性能和摩擦磨损性能进行表征,研究了不同润滑剂对材料性能的影响。结果表明,玻纤的添加可以明显提高材料的力学性能,固体润滑剂的加入,材料的力学性能稍微降低,但是变化不大。固体润滑剂聚四氟乙烯(PTFE)、石墨、二硫化钼(MoS_2)中,PTFE的减摩耐磨效果最佳,且PTFE的含量越高,复合材料的摩擦磨损性能越好,且不同润滑剂复配材料的摩擦磨损性能低于相同含量的PTFE。一定范围内,载荷越高,材料的摩擦因数越小;速度越快,材料的摩擦因数越高,但是磨损量随着速度和载荷的增加而显著提高。  相似文献   

4.
通过耐磨实验、拉伸实验和弯曲实验,考察了添加不同规格聚四氟乙烯(PTFE)微粉对改性ABS(丙烯腈-丁二烯-苯乙烯三元共聚物)的力学性能即耐磨性、拉伸强度、断裂伸长率、弯曲强度和弯曲模量的影响,实验发现当PTFE微粉加入量为5%时具有较好的综合性能。添加粒径较大的PTFE微粉更容易形成转移膜,摩擦系数更低。烧结的PTFE微粉结晶性更高,有利于提升ABS的耐磨性能。  相似文献   

5.
首先通过静电作用将氧化石墨烯(GO)与2,3–环氧丙基三甲基氯化铵(GTMAC)结合,再与马来酸酐(MAH)接枝聚苯醚(PPE)(PPE-g-MAH)发生反应,制得PPE接枝GO (GO-g-PPE)作为尼龙66 (PA66)材料的改性剂,采用共混挤出方式得到GO-g-PPE改性PA66复合材料。探讨了接枝前后的改性剂及添加量对复合材料力学性能、吸水率和摩擦性能的影响,采用扫描电子显微镜、差示扫描量热分析对复合材料界面相容性及热性能进行表征。结果表明,接枝后的GO-g-PPE与PA66的界面相容性明显优于仅添加GO/PPE的效果;当加入GO-g-PPE的质量分数≤0.8%时,随着GO-g-PPE用量的增加,GO-g-PPE改性PA66复合材料的力学性能有所提升,再继续增加GOg-PPE的用量反而使复合材料的力学性能下降。添加质量分数0.8%的GO-g-PPE时,GO-g-PPE改性PA66复合材料的热性能、力学性能最佳,与纯PA66相比,复合材料的结晶温度升高4℃,拉伸强度提高8.9%,断裂伸长率提高17.9%,缺口冲击强度提高37.6%;添加质量分数1.0%的GO-g-PPE时,复合材料的吸水率降低35.1%,摩擦系数减小14.3%。  相似文献   

6.
选取具有不同性质的4种耐磨改性剂(六钛酸钾、MoS2、硅酮粉、PTFE),通过共混的方法添加到ABS/PMMA合金中,测试其耐磨性,结果表明:耐磨添加剂能明显增加试样的耐磨性,硅酮粉有助于提高表面光亮度,PTFE的耐磨改性效果最为明显,原因是PTFE具有较强的自润滑性,在摩擦时会形成转移膜.  相似文献   

7.
采用双螺杆挤出机制备聚酰胺66(PA66)/碳纤维/玻璃纤维材料和PA66/碳纤维材料,另外加入相容剂马来酸酐接枝聚烯烃弹性体(POE–g–MAH)来改善相界面的相容性,同时评价其力学性能和摩擦磨损性能。结果表明:在碳纤维增强PA66材料的研究过程中引入玻璃纤维可降低最高界面温度并且使摩擦系数降低,有助于改善PA66材料的摩擦学性能,共混物的摩擦过程以磨粒磨损和粘着磨损为主。此外,在添加入玻璃纤维后,15%混杂纤维填充比15%碳纤维单独填充的PA66材料拉伸强度提高9.89%,冲击强度提高34.02%;而添加入20%混杂纤维与20%碳纤维单独填充的PA66材料相比,拉伸强度提高了71.65%,冲击强度提高了26.23%。  相似文献   

8.
铜及其氧化物填充UHMWPE力学、摩擦学性能研究   总被引:4,自引:0,他引:4  
在超高分子量聚乙烯(UHMWPE)中分别填充铜粉、氧化铜粉和氧化亚铜粉,用万能材料试验机、摩擦磨损试验机等研究了三种填料对UHMWPE复合材料力学性能和摩擦磨损性能的影响,利用扫描电子显微镜对几种材料的磨损表面进行了观察和分析。结果表明,在填料添加量相同时,铜粉的减摩耐磨效果最好,氧化铜粉的减摩耐磨效果次之,氧化亚铜粉的减摩耐磨效果最差;以体积分数25%的铜粉填充的UHMWPE复合材料,具有良好的力学性能和摩擦学性能,是一种有应用前景的聚合物基减摩抗磨材料。  相似文献   

9.
采用熔融挤出的方法制备了马来酸酐接枝聚乙烯(PE-g-MA)或聚四氟乙烯(PTFE)改性的聚酰胺66(PA66)共混物,并用注塑成型的方法制备共混材料试样。通过对材料的力学性能、摩擦磨损性能、动态热力学性能的测试与表征,初步探讨了它们之间的相互影响关系。结果表明,PE-g-MA和PTFE均能显著提高PA66材料的摩擦磨损性能,并随着填充量增加,材料的摩擦因数和体积磨损率持续降低。并且PE-g-MA和PTFE对PA66的摩擦磨损性能具有协同改性作用,当PE-g-MA和PTFE质量分数分别为5%和10%时,材料的综合性能最优。  相似文献   

10.
通过双螺杆挤出机熔融共混制备低吸水率PA66材料,研究增韧剂、低吸水助剂及其复配对PA66材料的吸水率、力学性能的影响。结果表明:PA66材料的吸水率与增韧剂(POE-g-MAH类)添加量成反比,随着添加量的增加能一定程度降低吸水率,但会对PA66的刚性造成降低,且添加量大。低吸水助剂能明显降低了PA66材料的吸水率,随着材料中低吸水助剂的增加,材料吸水率会相应降低,且低吸水助剂的添加量与材料力学性能成反比。通过相关研究发现在PA66材料中按比例添加增韧剂与低吸水助剂会在保证材料力学性能的前提下使材料的吸水率降低,且添加量比单独使用增韧剂(POE-g-MAH类)及低吸水助剂时少。  相似文献   

11.
在聚苯硫醚(PPS)中加入活化处理过的钛酸钾晶须(PTW)和玻璃纤维(GF),熔融共混挤出制得PPS/PTW/GF复合材料。探究了复合材料力学性能和摩擦性能随钛酸钾晶须添加量的变化以及复合材料力学性能随玻璃纤维添加量的变化关系。结果显示,添加适量的钛酸钾晶须能改善材料的力学性能和摩擦性能,降低了磨耗。玻璃纤维的加入能较大幅度提高材料的力学性能。当PPS/PTW/GF质量比为48/12/40时,可制得综合性能优良的高强耐磨复合材料,其冲击强度10.1 kJ/m2、拉伸强度157 MPa、弯曲强度208 MPa、摩擦因数为0.14、磨耗量28 mg。  相似文献   

12.
采用溴化聚苯乙烯(BPS)作为阻燃剂,短玻纤和玻璃微珠作为增强体系,与尼龙66(PA66)共混,经双螺杆挤出机挤出,制备了高表面质量、力学性能优良的阻燃增强PA66复合材料.研究结果表明,添加19份BPS后,PA66可以达到V-0级别的阻燃效果.使用0.8份硅酮润滑剂对PA66的表面质量有一定改善,并且对力学性能影响很小.将玻璃微珠与短玻纤复配,一定程度上可以改善PA66的表面质量,但玻璃微珠对PA66力学性能有不利影响,因此用量不能太大,控制在5份以内.  相似文献   

13.
以自制的乙烯-醋酸乙烯酯接枝马来酸酐(EVA-g-MAH)为相容剂,通过直接添加法和母粒添加法两种方式制备了EVA/硅酮粉复合材料。研究了硅酮粉和EVA-g-MAH的添加对该复合材料力学、热学以及加工性能的影响。结果表明:硅酮粉的添加改善了EVA材料的力学性能和热稳定性能,其最佳用量为4.0份,其中采用母粒添加法得到的复合材料性能更佳;相容剂EVA-g-MAH的引入对EVA/硅酮粉复合体系有一定的增容效果,当EVA-g-MAH用量为8.012份时,其对复合体系的增容效果最明显;另外,适量硅酮粉的添加还可改善复合材料的加工流动性。  相似文献   

14.
采用机械共混法添加石墨、二硫化钼(MoS_2)、聚四氟乙烯(PTFE)三种固体润滑剂对丁腈橡胶进行改性。通过力学性能试验和环块摩擦磨损试验研究不同填料比例对丁腈橡胶力学性能和摩擦磨损性能的影响,并利用振动测试分析系统对比了不同填料比例下改性丁腈橡胶的减振降噪性能。结果表明,固体润滑剂的加入提高了丁腈橡胶的机械强度;在载荷为66 N的干摩擦条件下平均摩擦因数最多降低了34%,体积磨损率最多降低了62%;减振降噪性能也得到增强,添加3 phr石墨、3 phr MoS_2、12 phr PTFE时,改性丁腈橡胶的减振降噪性能最好。  相似文献   

15.
耐磨陶瓷涂料的性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以电熔刚玉、莫来石、碳化硅为骨料,铝酸盐水泥为结合剂,加入复合氧化硅微粉及复合减水剂等制备耐磨陶瓷涂料并对其性能进行测试.结果表明:结合剂铝酸盐水泥的加入量对耐磨陶瓷的机械性能影响较大,另外,加入CA-70水泥比加入CA-50水泥作为结合剂可使耐磨陶瓷涂料具有更好的性能,SiC的加入也可使耐磨陶瓷涂料的力学性能提高.  相似文献   

16.
《弹性体》2015,(6)
研究了碳纤维(CF)用量及助剂对碳纤维/PA66复合材料性能的影响。结果表明:复合材料的拉伸强度随着CF用量增加而增大,当CF质量分数超过15%时,增幅缓慢。在同一载荷下,随CF用量的增加,复合材料的摩擦系数先降低后升高,碳纤维质量分数为20%时,复合材料体系的摩擦系数最小,较PA66树脂降低了1/3;相容剂、耐磨助剂的加入,可有效改善CF/PA66复合材料的摩擦磨损性能。  相似文献   

17.
研究了马来酸酐接枝聚苯醚(PPO-g-MAH)作为相容剂对聚苯醚/尼龙66(PPO/PA66)合金及30%玻璃纤维增强PPO/PA66合金(PPO/PA66/GF)体系性能的影响。通过傅里叶红外光谱(FTIR)、扫描电子显微镜(SEM)、差示扫描量热仪(DSC)及常规力学性能测试对PPO-g-MAH和PPO-g-MAH添加量对合金体系的微观形貌、熔融结晶行为及常规物性进行研究。结果表明:PPO-g-MAH的加入能够明显降低PPO/PA66合金中PPO分散相尺寸且玻璃化转变温度逐步向低温方向偏移,而PA66相的熔融焓和结晶焓也明显降低,都表明两相相容性的显著改善;PPO-g-MAH不仅能改善PPO/PA66合金的相容性,还能够进一步改善PPO/PA66/GF体系中玻璃纤维与基体树脂间的界面性能;宏观表现为PPO/PA66合金和PPO/PA66/GF体系物理力学性能的大幅度提升。  相似文献   

18.
采用三种不同牌号的硅酮粉与聚酰胺6(PA6)进行共混改性,并对材料的力学性能和微观结构进行了表征。结果表明,PA6/硅酮粉共混后,其中对比发现JY100-01的用量在3份时复合材料的综合性能最好,PA6的拉伸强度、弯曲强度有明显的改善,缺口冲击强度由4.74 k J/m2提高到6.96 k J/m2;加入偶联剂改性后,当KH550的质量分数为1%时,改性后的PA6/硅酮粉(JY100-01)的拉伸强度提高约10 MPa,其他性能也相应提高,且此时的流动速率增大;通过SEM分析可以看出,改性后的复合材料中团聚体减少,相界面模糊。  相似文献   

19.
采用机械共混法制备了石墨烯/PA46复合材料,然后表征石墨烯的加入对复合材料的热性能、力学性能、摩擦磨损性能的影响。结果表明,石墨烯的加入明显提高了PA46的结晶温度和热分解温度,但是力学性能呈现降低的趋势,当石墨烯的含量为0.1%时,复合材料的拉伸和弯曲性能达到最低值,比纯PA46分别降低了6.7%和4.2%。但是石墨烯的加入明显降低复合材料的摩擦因数和磨损量,当石墨烯添加量为0.05%时,摩擦因数降低了14.6%,磨损量只有纯PA46的1/5。  相似文献   

20.
采用机械共混的方法制备了PA66/PTFE复合材料,研究了聚四氟乙烯(PTFE)改性尼龙66( PA66)复合材料的摩擦磨损性能,并采用扫描电镜( SEM)观察了材料的磨损表面.结果表明:PTFE的加入可以有效改善尼龙66的摩擦性能,当PTFE质量分数为9%时,摩擦系数为纯PA66的57%左右,磨损量为纯PA66的43%左右,综合耐磨性最好.磨损面的扫描电镜观察发现,材料的磨损以黏着磨损和磨粒磨损为主,PTFE在共混体系中形成了微纤结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号