首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study a mixture of barium hexaferrite (BaFe12O19) and graphite was subjected to intensive milling in a planetary ball mill in order to synthesize BaFe12O19/Fe3O4 magnetic nano-composite. The effects of milling time and post-synthesis heat treatment on the powder characteristics were investigated using XRD, VSM and HRTEM techniques. XRD results showed that barium hexaferrite partially reduced during high-energy ball milling and nano-composite of BaFe12O19/Fe3O4 was obtained after 15 h milling of the initial mixture. Analysis of the 40 h milled and then heat-treated samples revealed that reduction of iron oxides proceeded at temperatures above 650 °C. The most intensive peaks of α-Fe were observed in XRD patterns of the samples heat treated at 850 and 950 °C. Magnetic property measurements showed that saturation magnetization of the milled sample increased considerably and coercivity decreased by heat treating at 950 °C. Re-calcination of the aforementioned sample resulted in an increase in coercivity value to 3444.62 Oe. HRTEM image showed nano-crystalline Fe3O4 in the structure of 40 h milled sample.  相似文献   

2.
Nitrogen-doped graphene–silver nanoparticle hybrids were prepared by thermal treatment of graphite oxide (GO) with glycine and silver nitrate at 500 °C. Glycine was used to reduce the nitrate ions, resulting in the decomposition of a glycine–nitrate mixture near 200 °C. The products of decomposition act as sources for nitrogen doping. The thermal treatment of a mixture of GO, glycine and silver nitrate results in the formation of silver nanoparticles at 100 °C, promotes the reduction of GO near 200 °C, and generates pyrrolic and pyridinic type nitrogen doping in graphene at 300 and 500 °C, respectively. The atomic percentage of nitrogen in as-prepared sample is about 13.5%. This approach opens up a new possibility for the synthesis of nitrogen-doped graphene decorated with various metallic nanoparticles, which could find important applications in the fields of energy storage and conversion devices.  相似文献   

3.
《Ceramics International》2015,41(8):9549-9554
Star-shaped 800-TiN and 850-TiN coatings were deposited on the surface of 310S stainless steel foils by CVD and their oxidation behavior was investigated in ambient air, from 300 °C to 800 °C for 1800 s by XRD, SEM, EDX and Raman spectroscopy. Initial oxidation of 850-TiN coating with a partial color change occurs at 350 °C, remarkable oxidation of 850-TiN coating occurring between 400 °C and 450 °C. The EDX results show that obvious oxidation of 850-TiN starts at 400 °C with about 9 at% oxygen detected; no N atoms could be detected while the O content reaching a maximum of ca. 70% at oxidation temperature above 700 °C. The XRD and Raman results show that only rutile-TiO2 formed on the surface of oxidized TiN coating. The oxidation of star-shaped TiN coating can be divided into three stages. In the case of mild oxidation (below 500 °C), TiN coating can maintain the star-shaped microstructure although oxygen diffuses into the TiN lattice resulting in replacement of N by O atoms. For moderate oxidation (550–600 °C), the star-shaped microstructures start to crack along the (111) twin planes, and the boundary of particles remains clear with oxide and oxynitride layer coexisting on the surface of 850-TiN coating. For severe oxidation (650–750 °C), the cracks of the star-shaped microstructures start to expand and become apparent, meanwhile the boundary of particles become uncertain. After oxidizing at 800 °C, the 850-TiN coating will lose efficacy due to the bad spalling resistance.  相似文献   

4.
MnO2 nanorods were synthesized by mechanochemical processing with subsequent heat treatment and their photocatalytic activity was studied on the decolourization of aqueous solution of Rhodamine B at different pH levels. A solid state redox reaction 2KMnO4 + MnCl2 → 3MnO2 + 2KCl + O2 was activated during mechanical milling. Excess KCl salt was added in the starting powder mixture to prevent agglomeration of MnO2 nanoparticles. The milling resulted in the production of amorphous MnO2 nanoparticles with a high surface area of 204 m2 g?1. Crystalline MnO2 nanorods of diameters about 15–20 nm were produced by heating the as-milled powder at 350 °C for 1 h in air. Amorphous MnO2 nanoparticles showed higher degradation rate of Rhodamine B than crystalline MnO2 nanorods under simulated sunlight. The degradation rate was higher under acidic conditions. This work demonstrates the potential for cost effective, green and scalable synthesis of MnO2 nano-catalysts for environmental applications.  相似文献   

5.
Effects of oxidation cross-linking and sintering temperature on the microstructure evolution, thermal conductivity and electrical resistivity of continuous freestanding polymer-derived SiC films were investigated. The as-received films consisting of β-SiC nanocrystals embedded in amorphous SiOxCy and free carbon nanosheets were fabricated via melt spinning of polycarbosilane (PCS) precursors and cured for 3 h/10 h followed by pyrolysis from 900 °C to 1200 °C. Results reveal that nanoscale structure (β-SiC/SiOxCy/Cfree) provides an ingenious strategy for constructing highly thermal conductive, highly insulating and highly flexible complexes. In particular, the 3 h-cured films sintered at 1200 °C with satisfying thermal conductivity (46.8 W m?1 K?1) and electrical resistivity (2.1 × 108 Ω m) are suitable for the realization of high-performance substrates. A remarkable synergistic effect (lattice vibration of β-SiC nanocrystals and close-packed SiOxCy, free-electron heat conduction of β-SiC and free carbon, and supporting role of oxygen vacancy) contributing to thermal conductivity improvement is proposed based on the analysis of microstructure, intrinsic properties and simulations. Eventually, the SiC films without additional dielectric layers are directly silk-screen printed with high-temperature silver paste and used as heat dissipation substrates for high-power LED devices via chip-on-board (COB) package. The final devices can emit bright light with low-junction temperature (52.6 °C) and good flexibility owing to the mono-layer SiC substrate with low thermal resistance and desirable mechanical properties. This work offers an effective approach to design and fabricate flexible heat dissipation ceramic substrates for thermal management in advanced electronic packaging fields.  相似文献   

6.
The α-MoO3 ceramics were prepared by uniaxial pressing and sintering of MoO3 powder at 650 °C and their structure, microstructure, densification and sintering and microwave dielectric properties were investigated. The sintering temperature of α-MoO3 was optimized based on the best densification and microwave dielectric properties. After sintering at 650 °C the relative permittivity was found to be 6.6 and the quality factor was 41,000 GHz at 11.3 GHz. The full-width half-maximum of the A1g Raman mode of bulk α-MoO3 at different sintering temperatures correlated well with the Qf values. Moreover, the sintered samples showed a temperature coefficient of the resonant frequency of ?25 ppm/°C in the temperature range from ?40 to 85 °C and they exhibited a very low coefficient of thermal expansion of ±4 ppm/°C. These microwave dielectric properties of α-MoO3 will be of great benefit in future MoO3 based materials and their applications.  相似文献   

7.
Lead-free Bi0.5(Na0.8K0.2)0.5TiO3 (abbreviated as BNKT) thin films were grown on Pt(111)/Ti/SiO2/Si substrates using a sol-gel/spin coating technique and were then annealed at different temperatures (350 °C, 550 °C, 750 °C and 850 °C). Analysis of the XRD patterns and FT-IR spectra were used to determine the main reactions and the phase formation process of BNKT thin films during the sol-gel process. The results show that the dielectric constant of the thin films attains a maximum at a set temperature and then decreases at higher annealing temperatures, which can be attributed to phase formation and transformation. Moreover, the morphologies of the BNKT thin films improve with the increase in grain size and the formation of distinct grain boundaries. Furthermore, through increasing the pH of the precursor solutions, the size of the sol-gel colloidal particles increases slightly and the grains formed from the corresponding solutions tend to be small and uniform.  相似文献   

8.
Copper ferrite (CuFe2O4) was synthesised from an equimolar mixture of copper and iron oxides by mechanosynthesis and subsequent heat treatment. After mechanosynthesis, depending on the milling time, the powder consists in a mixture of phases. The heat treatment at 600 °C did not lead to a complete reaction of the mechano-activated precursors. After the heat treatments at 800 and 1000 °C, the complete formation of copper ferrite for almost all the milling times was noticed. The crystal structure of the copper ferrite was found to be cubic for all the samples heat treated at 1000 °C and a mixture of tetragonal and cubic for the samples heat treated at 800 °C. The amount of copper ferrite with cubic structure predominates in the samples with prolonged milling duration and a decrease of the tetragonal distortion by increasing the milling time occurs. The crystallisation of CuFe2O4 in cubic structure for the samples milled for prolonged time is influenced by the powder contamination with iron. The magnetisations of the samples obtained after heat treatment at 1000 °C were found to be larger compared to the ones of the samples heat treated at 800 °C. The iron contamination, milling duration and heat treatment temperature influence the cations distribution, thus leading to the saturation magnetisation of the copper ferrite samples ranging from 11.9 μB/f.u. to 16.4 μB/f.u.  相似文献   

9.
《Ceramics International》2016,42(7):7974-7979
In this paper forsterite (Mg2SiO4) nanopowder with particle size in the range of 33 and 112 nm was synthesized by a combination of sol–gel and ball milling methods. Magnesium nitrate and silica were used as the sources of magnesium and silicon in the forsterite nanopowder. Thermogravimetry (TG) analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and dynamic light scattering (DLS) techniques were utilized to characterize the synthesized powders. Single-phase nanocrystalline forsterite powder with mean crystallite size of about 16 nm was obtained from sol–gel method with subsequent ball milling for 5 h and heat treatment at 750 °C for 1 h. A combination of sol–gel and mechanical activation led to the formation of more homogeneous powder and subsequently lower sintering temperature to produce forsterite powder. In vitro biological studies were performed by immersing the forsterite samples in simulated body fluid (SBF). The results showed that nanostructure forsterite is bioactive and possessed apatite formation ability.  相似文献   

10.
Calcined powders of ZrV1.2P0.8O7 (ZVP) and ZrV2O7 (ZV) were synthesized by heating gels prepared from NH4H2PO4, NH4VO3, and ZrOCl2 solutions at 500 and 400 °C, respectively. Dense ZV-added ZVP sintered bodies were subsequently fabricated through heating at 850 °C for 20 h, with the addition of ZrV2O7 as a sintering additive. The resulting material had a relative density of ca. 92%, while the relative density of pure sintered ZVP was ca. 72%. NH4H2PO4 (NHP) was also added to ZVP along with ZV to obtain a molar ratio of P in NHP for V in ZV = 1. Subsequently, a single phase (NHP, ZV)-added ZVP sintered body was obtained by heating at 850 °C. Thermomechanical analysis showed that the dense ZV-added ZVP sintered body exhibited a positive thermal expansion from 25 to 150 °C and a negative thermal expansion from 150 to 500 °C.  相似文献   

11.
The effects of calcination temperature on the bulk density, piezoelectric, and ferroelectric properties were investigated for the Ag2O doped 0.94(K0.5Na0.5)NbO3–0.06LiNbO3 ceramics. The calcination temperatures were varied from 750 to 950 °C by 50 °C differences. An tetragonal XRD pattern, consistent with single-phase 0.94(K0.5Na0.5)NbO3–0.06LiNbO3 was obtained after calcination at 850 °C for 2 h. And the experimental results showed that Ag2O doped 0.94(K0.5Na0.5)NbO3–0.06LiNbO3 ceramics calcined at 850 °C had a remnant polarization Pr=24.5 μC/cm2, bulk density=4.32 g/cm3, piezoelectric constant d33=282 pC/N and electromechanical coefficient kp=37.8%.  相似文献   

12.
In this work, Algerian kaolinite, a naturally occurring clay mineral, was used as low-cost precursor for the synthesis of cordierite ceramics. The kaolinite was mixed with synthetic magnesia, and the mixture was ball milled and reaction sintered in the temperature range 900–1350 °C for 2 h. Thermogravimetry (TG), differential thermal analysis (DTA), dilatometry, high temperature x-ray powder diffraction (XRD), Raman spectroscopy, and scanning electron microscopy (SEM) complementary techniques were used to analyze sintering behavior, characterize phase transformations, and investigate crystallization kinetics. Milling the kaolinite and magnesia mixture for 10 h yielded a homogenous powder, decreased the average particle size, and improved the roundness of particles. Different crystalline phases were present in the samples sintered in the temperature range 900–1150 °C, the cordierite phase started to crystallize at 1200 °C, and the formation of highly dense cordierite (99%) was complete at 1250 °C. The activation energy values for cordierite formation calculated using Kissinger, Boswell, and Ozawa methods were found to be equal to 577, 589, and 573 kJ/mol, respectively. The kinetic parameters n and m had values close to 2. Bulk nucleation with a constant number of nuclei was the dominant mechanism in cordierite crystallization, followed by two-dimensional growth controlled by interface reaction.  相似文献   

13.
Lanthanum doped strontium titanate–gadolinium doped cerium oxide (LST-GDC) anodic layers are sintered in air and further reduced in-situ at low temperature (750 °C) avoiding usually performed pre-reduction treatment at high temperature. The influence of various milling techniques and of powders with different specific surface area, on the microstructures of screen-printed anodes, is investigated. The combination of milling and sonication processes is efficient in reducing aggregation of the anode powders. The anode performance is improved when a planetary milling step is involved in the preparation of the screen printing inks. The use of gadolinium doped cerium oxide with high specific surface area decreases the polarization resistance. The rate of hydrogen oxidation is also enhanced by increasing porosity.  相似文献   

14.
The reaction mechanisms of formation and decomposition of fluorapatite?zirconia composite nanopowders were investigated after the mechanochemical process and subsequent thermal treatment. Experimental results indicated that formation of fluorapatite?zirconia composite nanopowders proceeded in several steps. In the first stage, phosphoric acid formed immediately upon addition of phosphorous pentoxide to the reaction mixture. Afterwards, anhydrous dicalcium phosphate was generated as a result of reaction between reagents with phosphoric acid. The synthesis progressed by the formation of the stoichiometrically deficient hydroxyfluorapatite?zirconia composite at milling times between 5 and 15 min. Ultimately, the fluorapatite?zirconia composite nanopowder was obtained after 300 min of milling. Results revealed that the annealing process led to a decomposition of fluorapatite to tricalcium phosphate and calcium fluoride, and to the transformation of monoclinic zirconia to the tetragonal form. Field emission scanning electron microscope observations showed that the milled sample was composed of fine particles with a mean particle size of about 45 nm after 300 min of milling. Besides, the mean particle size increased progressively due to crystal growth in the temperature range above 900 °C. According to the gained data, reaction mechanism steps were proposed to clarify the reactions occurring during the above-mentioned solid state process.  相似文献   

15.
The objective of this work was to examine linear thermal expansion of virgin and poled 0.57Pb(Sc1/2Nb1/2)O3–0.43PbTiO3 ceramics between 30 °C and 600 °C by contact dilatometry. The thermal expansion dL/Lo of the virgin ceramic increases with increasing temperature until approximately 260 °C. The physical and technical thermal expansion coefficients were determined. At 260 °C the physical thermal coefficient is 2.08 × 10?6 K?1. Between 260.0 °C and 280.0 °C an anomaly in the thermal expansion vs. temperature and an endothermic peak in the differential scanning calorimetry curves correspond to the phase transition region from tetragonal to cubic phase. At temperatures from 280 °C to 600 °C the thermal expansion dL/Lo increases again.In the derivative of the dL/Lo heating curves of the poled ceramics, additionally to the anomaly at 270 °C, also the anomaly at 160 °C is observed, which is associated with the depolarization of the material during heating.  相似文献   

16.
This paper reports the synthesis of different particle size La0.7Sr0.3MnO3 (LSMO) nanoparticles using non-aqueous sol gel synthesis route by calcination at temperatures 750 °C, 850 °C and 950 °C. In the present work, the effect of particle size of LSMO nanoparticles on its structural, magnetic and transport properties has been studied in detail. The X-ray diffraction analysis confirms the formation of LSMO nanoparticles having rhombohedral (R3?c) structure with average particle size of 20 nm, 22.5 nm and 25.6 nm. An increase in magnetization and decrease in coercivity with increase in particle size is attributed to the magnetically disordered surface layer. The bifurcation in ZFC-FC magnetization indicates the possibility of spin glass like behavior of the LSMO nanoparticles. The effect of particle size on the resistivity and magnetoresistance were studied by using different conduction mechanism for different temperature regions. The upturn in the ρ-T curve at lower temperatures was explained by using Kondo-like transport mechanism. The maximum LFMR achieved was 32.3% at a field of 1 T at 10 K for 20 nm LSMO nanoparticle.  相似文献   

17.
The oxidation of a (Mo, W)Si2-based composite was investigated in the temperature range (350–950 °C). The influence of temperature and water vapour on the oxidation was examined. The kinetics was studied using a thermobalance whereas the morphology and composition of the oxides were examined using X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive X-ray (EDX). Focused ion beam (FIB) milling was performed on some of the oxide scales which allowed us to look at a non-mechanically disturbed scale/oxide in cross-section. Rapid oxidation was found to occur in the 550–750 °C temperature range. The mass gains were significantly larger in O2 than in O2 + 10%H2O. The different mass changes in the two exposure atmospheres were attributed to the higher vapour pressure of the volatile MoO2(OH)2 and WO2(OH)2 species in O2 + 10%H2O than that of (MoO3)3 and (WO3)3 in dry O2. The peak mass gain was found to occur at a temperature of about 750 °C in O2 and 650 °C in O2 + 10%H2O. At temperatures above 850 °C, especially when water vapour is present, the removal of Mo and W from the oxide scales is rapid enough to allow partial healing of the silica, causing the oxidation rate to drop. At 950 °C in O2 + 10%H2O, a protective SiO2 scale could be re-established quickly and maintained, causing the oxidation to essentially cease.  相似文献   

18.
Densification behavior, mechanical and thermal properties of ZrC1 ? x ceramics with various C/Zr ratios of 0.6–1.0 have been investigated by two-step reactive hot pressing of ZrC and ZrH2 powders at 30 MPa and 1500–2100 °C. The two-step reactive hot pressed ZrC1 ? x ceramic has a higher relative density (> 95.3%) than that (91.9%) of stoichiometric ZrC sintered at 2100 °C. A cubic Zr2C-type ordered phase forms in the ZrC1 ? x sample obtained at a ZrC/ZrH2 molar ratio of 0.6 at a relatively low temperature of 1100 °C. The decrease in C/Zr ratio is beneficial to densification of ZrC1 ? x ceramic, however, excess grain growth occurs after sintering above densification temperature. The elastic modulus and Vickers hardness decrease with decreasing the C/Zr ratio. With decreasing the C/Zr ratio, both thermal conductivity and specific heat decrease due to the enhanced scattering of conducting phonons and electrons by carbon vacancies.  相似文献   

19.
Selective etherification of glycerol to polyglycerols by hydrotalcite catalysts prepared using combustion method was investigated. Characteristics and activity of catalysts synthesized using various fuel types in the combustion method (glucose, fructose and saccharose) and calcination temperature (450 °C to 850 °C) were elucidated. Due to suitable molecular size and enthalpy, glucose was the most suitable fuel to be used. Calcination at 650 °C led to the highest catalytic activity (77.7% conversion) in 16 h. However, 850 °C was detrimental to catalytic activity due to the extraction of MgO from the hydrotalcite framework.  相似文献   

20.
The purpose of this study was to obtain cordierite from compositions containing kaolin waste (with different particle-size distributions), talc and magnesium oxide, for use in the production of refractory and insulating materials. The samples were characterized by means of the following techniques: chemical analysis by X-ray fluorescence, X-ray diffraction, particle size analysis and thermogravimetric and differential thermal analysis. The microstructure of the samples was analyzed using scanning electron microscopy. Rectangular test specimens (50 mm × 15 mm × 5 mm) were prepared by uniaxial pressing (13.0 MPa), dried at 110 °C/24 h and sintered at temperatures of 950, 1050, 1150, 1250 and 1350 °C. The mineralogical analysis revealed the beginning of the formation of characteristic peaks of cordierite phase at 1250 °C, and more intense peaks were identified at 1350 °C. The morphological analysis revealed rose-like and hexagonal tube-like crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号