首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
吴家桦  沈来宏  肖军  王雷  郝建刚 《化工学报》2009,60(8):2080-2088
设计并建立了10 kWth级串行流化床化学链燃烧反应器系统,以NiO/Al2O3为载氧体,在该系统上进行生物质(松木木屑)化学链燃烧分离CO2的试验研究,探讨了燃料反应器温度T、水蒸气/生物质比率S/B对两个反应器(空气反应器和燃料反应器)气体产物组成以及燃烧效率的影响。试验结果表明,燃料反应器温度是影响生物质化学链燃烧过程的重要因素,随着温度的升高,燃料反应器气体产物中CO2浓度不断上升,CH4浓度显著降低,CO浓度先升高而后迅速下降;较高的反应器温度有助于燃烧效率的提高。随着S/B的增加,燃料反应器气体产物中CO和CH4浓度均会增大,CO2浓度以及燃烧效率有所降低。在100 h的连续试验过程中,采用共沉淀法制备的NiO/Al2O3载氧体展现出良好的氧化-还原性能和较强的持续循环能力,是生物质化学链燃烧理想的载氧体。  相似文献   

2.
基于NiO载氧体的煤化学链燃烧实验   总被引:4,自引:2,他引:2  
高正平  沈来宏  肖军 《化工学报》2008,59(5):1242-1250
采用流化床反应器并以水蒸气作为气化-流化介质,研究了以NiO为载氧体在800~960℃内的煤化学链燃烧反应特性。实验结果表明,载氧体与煤气化产物在反应器温度高于900℃体现了高的反应活性。随着流化床反应器温度的提高,气体产物中CO2的体积浓度(干基)呈单调递增;CO、H2、CH4的体积浓度(干基)呈单调递减;煤中碳转化为CO2的比率逐渐递增,碳的残余率逐渐递减。反应器出口气体CO2、CO、H2、CH4的生成率随反应时间呈单峰特性,H2生成率的峰值远小于CO的峰值;且随反应器温度升高,CO2生成率升高,CO、H2、CH4的生成率降低。反应温度高于900℃时,流化床反应器NiO载氧体煤化学链燃烧在9 min之内就基本完成,CO2含量高于92%。  相似文献   

3.
超细二氧化错的差示扫描量热法分析及物相表征   总被引:1,自引:0,他引:1  
刘源 《工业催化》1998,6(1):55-59
通过对由超临界干燥制得的超细ZrO2及Y2O3含的ZrO2超细的热分析和物相表征发现, 由超临界干燥法制得的ZrO2含水量极微, 但含有较多的有机物, 这些有机物需在空气中在约450℃方可除去。ZrO2及Y2O3-ZrO2在差示扫描量热曲线上400~500℃间出现的放热峰对应其由无定型向四方晶系的转化。和惰性气氛相比, 空气气氛有利于这一晶化过程。在ZrO2中添加微量Y2O3有利于稳定ZrO2的四方晶系。  相似文献   

4.
采用共沉淀法制备γ-Al2O3载体和不同Ce添加量的CeO2-Al2O3载体,然后用浸渍法制备Ni负载质量分数10%的Ni/γ-Al2O3和Ni/CeO2-Al2O3催化剂。在固定床微反装置中考察了反应温度、原料气配比和CH4空速等工艺条件对Ni/γ-Al2O3和Ni/Ce30Al70Oδ催化剂在甲烷自热重整制氢反应中催化性能的影响。结果表明,添加Ce的催化剂催化性能有较大提高,在Ni/Ce30Al70Oδ催化剂上,反应温度750 ℃时, CH4转化率94.3%,与Ni/Al2O3催化剂相比,提高20%。Ni/γ-Al2O3和Ni/CeO2-Al2O3催化剂的CH4转化率均随反应温度的升高而增大。原料气中n(O2)∶n(CH4)和n(H2O)∶n(CH4)的增加均能提高各催化剂的CH4转化率。但n(O2)∶n(CH4)和n(H2O)∶n(CH4)的变化对各催化剂的催化性能的影响不同。随着n(O2)∶n(CH4)的增大,产物中n(H2)∶n(CO)降低,n(CO2)∶n(CO+CO2)升高;而n(H2O)∶n(CH4)增大时,产物中n(H2)∶n(CO)和n(CO2)∶n(CO+CO2)均升高。随着CH4空速的增加,Ni/Al2O3催化剂上CH4转化率、n(H2)∶n(CO)和n(CO2)∶n(CO+CO2)均较大程度下降;而在Ni/Ce30Al70Oδ催化剂上,随着CH4空速的增加,CH4转化率、n(H2)∶n(CO)和n(CO2)∶n(CO+CO2)变化不大。  相似文献   

5.
向文国  狄藤藤 《化工学报》2007,58(7):1816-1821
本文将具有分离CO2的链式燃烧技术与整体煤气化联合循环(IGCC)技术结合,构成整体煤气化链式燃烧联合循环系统,对系统性能进行了模拟研究。结果表明,采用德士古气化工艺、空气反应器出口温度1200℃,NiO/NiAl2O4作载氧体,压气机压比17、补燃后透平初温(TIT)1350℃、冷却空气量12%时,系统净效率39.61% HHV(41.55%LHV),CO2排放量126 g·kW-1·h-1。补燃温度1350℃,空气反应器温度由1000℃升高到1200℃,CO2的回收率提高约23%,系统效率由40.3%降低到39.61%;补燃温度由1200℃提高到1500℃,系统净效率由37.4%增加到40.8%,CO2的排放量从3g·kW-1·h-1增加到202 g·kW-1·h-1;补燃温度一定,压比增大,系统比功减小,CO2排放量增加,效率先增大后减小,存在最佳压比.  相似文献   

6.
吕友军  郭烈锦 《化工学报》2006,57(6):1267-1273
通过高压吸收法可以将生物质超临界水气化制氢的气体产物中的CO2与H2分离.基于修正的UNIFAC模型、SRK状态方程以及MHV2混合规则,建立了生物质超临界气化制氢产物高压吸收法分离的气液相平衡的计算模型,讨论了CO2与H2分离过程中压力和温度等参数对分离效果的影响.计算结果表明:随着分离器中压力的升高,气相产物中H2的摩尔分数增加,CO2摩尔分数迅速下降,气相中H2的收率不断降低;随着温度升高,气相产物中H2的摩尔分数减小,CO2摩尔分数上升,气相中H2的收率增加;然而,高压吸收的方法不能将气体产物中的CO、CH4、C2H4、C2H6与H2分离.  相似文献   

7.
陈光文  袁权 《化工学报》2002,53(2):111-115
对在由硅橡胶 /陶瓷复合膜所构成的膜反应器中进行的CO2 加氢合成甲醇的复杂反应体系CO2 +3H2=CH3 OH +H2 O与CO2 +H2=CO +H2 O开展实验研究 .考察了硅橡胶 /陶瓷复合膜在合成含氧化合物反应过程中的作用 ,并讨论了CO2 与H2 合成甲醇反应的膜反应过程参数对反应行为的影响 ,对部分理论分析结果进行验证 .在实验条件下 ,CO2 合成甲醇复杂反应体系中的主反应转化率较传统的固定床反应器提高了 2 2 %  相似文献   

8.
铁含量对Fe-Mn-K催化剂上CO2加氢反应性能的影响   总被引:2,自引:0,他引:2  
在370 ℃、2.0 MPa和600 h-1条件下,考察了Fe-Mn-K复合催化剂上的CO2选择性加氢合成低碳烯烃性能。XRD表征表明,复合催化剂中负载的金属组分主要以Fe2O3和MnO2形式存在。通过H2-TPR和CO2-TPD研究了Fe-Mn-K催化剂对H2的还原性能和CO2吸附性能的影响,当催化剂中Fe负载质量分数为12%时,H2-TPD温度较低,CO2转化率大于30%,C=2~C=4低碳烯烃选择性也较高。CO2-TPD结果表明,随Fe含量的增加,初始脱附温度提高,脱附量增加,催化剂对CO2的吸附强度逐渐增大。  相似文献   

9.
以CuSO4·5H2O和MnSO4·H2O为前驱物,NaOH为沉淀剂,选用共沉淀工艺,添加Al2O3、BaO+Al2O3、ZrO2+Al2O3或CeO2+Al2O3粉末作为催化助剂,制备了4种铜锰氧化物水煤气高温变换催化剂。X射线衍射分析表明,4种铜锰氧化物催化剂的主要化学成分为氧化铜和氧化锰系化合物以及锰钡、铜锰和铜锰铝复合氧化物;在催化水煤气变换反应(WGSR)后,4种铜锰氧化物的化学成分发生了变化。H2还原实验结果表明,在4种铜锰氧化物中,添加ZrO2+Al2O3的铜锰氧化物H2还原效率最好;而添加CeO2+Al2O3的铜锰氧化物H2还原效率最小。对WGSR出口气中CO体积分数进行对比分析可知,分别添加Al2O3和CeO2+Al2O3铜锰氧化物催化剂的变换活性较好。  相似文献   

10.
直接NaBH4/H2O2燃料电池的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
直接NaBH4/H2O2燃料电池是一种燃料和氧化剂均为液体的新型燃料电池,它直接以NaBH4溶液为阳极燃料,H2O2 为阴极氧化剂。该燃料电池有很高的输出电压、能量转化效率和能量密度,并且反应中能产生8个电子。本文对硼氢化钠电氧化材料、过氧化氢电还原材料,以及直接NaBH4/H2O2燃料电池的性能进行了综述。  相似文献   

11.
《分离科学与技术》2012,47(13):3013-3044
Abstract

Reformed gas made by the steam methane reforming(SMR) process is used as fuel feed to MCFC, but it is not as good as pure hydrogen due to the presence of CO2 and CO. The sorption-enhanced steam methane reforming(SE-SMR) process can reduce CO2 and CO to a low level and produce high purity hydrogen. Considering the merits of similar operating temperatures (about 500°C) and carbon dioxide recycle, a novel concept of a six-step sorption-enhanced steam methane reforming (SE-SMR) combined with electricity generation by molten carbonate fuel cell (MCFC) is proposed. In the present paper, a cycle of the SE-SMR process, which include the steps of reaction/adsorption, depressurization, gas purges (nitrogen and reformed gas, respectively), and pressurization with reformed gas, is modeled and analyzed. The process stream in the SE-SMR process is used as anode feed in MCFC. According to the result of numerical simulation, a fuel cell grade hydrogen product (above 80% purity) at the SE-SMR temperature of 450°C can be obtained. A carbon dioxide recycle mechanism is developed for cathode feed of MCFC from flue gas by burning with excess air to achieve a proper CO2/air ratio (about 30:70). The novel electricity generation system, which can operate at lower energy consumption and high purity hydrogen feed is helpful for the MCFC'S performance and life time.  相似文献   

12.
P. Britz  N. Zartenar 《Fuel Cells》2004,4(4):269-275
Viessmann is developing a PEM fuel cell system for residential applications. The uncharged PEM fuel cell system has a 2 kW electrical and 3 kW thermal power output. The Viessmann Fuel Processor is characterized by a steam‐reformer/burner combination in which the burner supplies the required heat to the steam reformer unit and the burner exhaust gas is used to heat water. Natural gas is used as fuel, which is fed into the reforming reactor after passing an integrated desulphurisation unit. The low temperature (600 °C) fuel processor is designed on the basis of steam reforming technology. For carbon monoxide removal, a single shift reactor and selective methanisation is used with noble metal catalysts on monoliths. In the shift reactor, carbon monoxide is converted into hydrogen by the water gas shift reaction. The low level of carbon monoxide at the outlet of the shift reactor is further reduced, to approximately 20 ppm, downstream in the methanisation reactor, to meet PEM fuel cell requirements. Since both catalysts work at the same temperature (240 °C), there is no requirement for an additional heat exchanger in the fuel processor. Start up time is less than 30 min. In addition, Viessmann has developed a 2 kW class PEFC stack, without humidification. Reformate and dry air are fed straight to the stack. Due to the dry operation, water produced by the cell reaction rapidly diffuses through the electrolyte membrane. This was achieved by optimising the MEA, the gas flow pattern and the operating conditions. The cathode is operated by an air blower.  相似文献   

13.
Low temperature exhaust gas fuel reforming of diesel fuel   总被引:1,自引:0,他引:1  
A Tsolakis  M.L Wyszynski 《Fuel》2004,83(13):1837-1845
The application of exhaust gas assisted fuel reforming in diesel engines has been investigated. The process involves hydrogen generation by direct catalytic interaction of diesel fuel with engine exhaust gas. Using a laboratory reforming mini reactor incorporated in the exhaust system of a diesel engine, up to 16% hydrogen in the reactor product gas was achieved at a reactor inlet temperature of 290 °C. The results showed that such levels of hydrogen can be produced with appropriate control of the reaction parameters at temperatures typical of exhaust gas temperatures of diesel engines operating at part load without any requirement for external heat source or air and steam supply. The use of simulated reformed fuel was shown to be beneficial in terms of engine exhaust emissions and resulted in reduction of NOX and smoke emissions.  相似文献   

14.
Autothermal reforming (ATR) is one of the leading methods for hydrogen production from hydrocarbons. Liquefied petroleum gas, with propane as the main component, is a promising fuel for on-board hydrogen producing systems in fuel cell vehicles and for domestic fuel cell power generation devices. In this article, propane ATR process is studied and operation conditions are optimized with PRO/Ⅱ from SIMSCI for proton exchange membrane fuel cell application. In the ATR system including water gas shift and preferential oxidation, heat in the hot streams and cold streams is controlled to be in balance. Different operation conditions are studied and drawn in contour plots. The region for ATR reforming with the highest efficiency can thus be identified. One operation point was chosen with the following process parameters: feed temperature for the ATR reactor is 425℃, steam to carbon ratio S/C is 2.08, air stoichiometry is 0.256. Thermal efficiency for the integrated system is calculated to be as high as 84.0 % with 38.27 % H2 and 3.2μl·L^-1 CO in the product gas.  相似文献   

15.
The production of hydrogen for fuel cells by steam reforming of heptane is investigated in a Circulating Fluidized Bed Membrane Reformer-Regenerator (CFBMRR) system (A.I.Ch.E. Journal 49(5) (2003) 1250). Palladium based hydrogen permselective membranes are used for hydrogen removal and dense perovskite oxygen permselective membranes are used for oxygen introduction. A series of pseudo-steady-state simulations show that when the catalyst is not regenerated, the circulating nickel reforming catalyst deactivates quickly and the “half catalyst activity life” for efficient production of hydrogen is quite short, especially at high temperatures. Efficient continuous catalyst regeneration can keep the catalyst activity high (∼1.0). With continuous catalyst regeneration, autothermal operation for the entire adiabatic reformer-regenerator system is achievable when the exothermic heat generated from the catalyst regenerator is sufficient to compensate for the endothermic heat consumed in the riser reformer. This type of autothermal operation becomes less likely at high steam to carbon feed ratios. This is due to the fact that carbon deposition rate decreases leading to the decrease of autothermal circulating feed temperature and energy-based hydrogen yield (adiabatic hydrogen yield in autothermal reformer-regenerator system). Multiplicity of the steady states for the reformer is possible for this configuration. With the steam to carbon feed ratio as the bifurcation parameter, multiplicity occurs between the two bifurcation points 1.444 and 2.251 mol/mol. In this multiplicity region, the energy-based hydrogen yield at the upper steady state with high regenerator output temperature is surprisingly the lowest one. While it is the highest one at the lower steady state with low regenerator output temperature. The maximum energy-based hydrogen yield is about 15.58 moles of hydrogen per mole of heptane fed at the lower steady-state when steam to carbon feed ratio is very close to the bifurcation value of 1.444 mol/mol. After removing the sweep gas steam by downstream cooling and de-humidification, the product hydrogen from steam reforming of hydrocarbons can be used for fuel cells with high purity (∼100%).  相似文献   

16.
《Fuel》2006,85(12-13):1631-1641
Chemical-looping reforming is a technology that can be used for partial oxidation and steam reforming of hydrocarbon fuels. This paper describes continuous chemical-looping reforming of natural gas in a laboratory reactor consisting of two interconnected fluidized beds. Particles composed of 60 wt% NiO and 40 wt% MgAl2O4 are used as bed material, oxygen carrier and reformer catalyst. There is a continuous circulation of particles between the reactors. In the fuel reactor, the particles are reduced by the fuel, which in turn is partially oxidized to H2, CO, CO2 and H2O. In the air reactor the reduced oxygen carrier is reoxidized with air. Complete conversion of natural gas was achieved and the selectivity towards H2 and CO was high. In total, 41 h of reforming were recorded. Formation of solid carbon was noticed for some cases. Adding 25 vol% steam to the natural gas reduced or eliminated the carbon formation.  相似文献   

17.
In chemical-looping combustion (CLC) a gaseous fuel is burnt with inherent separation of the greenhouse gas carbon dioxide. The oxygen is transported from the combustion air to the fuel by means of metal oxide particles acting as oxygen carriers. A CLC system can be designed similar to a circulating fluidized bed, but with the addition of a bubbling fluidized bed on the return side. Thus, the system consists of a riser (fast fluidized bed) acting as the air reactor. This is connected to a cyclone, where the particles and the gas from the air reactor are separated. The particles fall down into a second fluidized bed, the fuel reactor, and are via a fluidized pot-seal transported back into the riser. The gas leaving the air reactor consists of nitrogen and unreacted oxygen, while the reaction products, carbon dioxide and water, come out from the fuel reactor. The water can easily be condensed and removed, and the remaining carbon dioxide can be liquefied for subsequent sequestration.The gas leakage between the reactors must be minimized to prevent the carbon dioxide from being diluted with nitrogen, or to prevent carbon dioxide from leaking to the air reactor decreasing the efficiency of carbon dioxide capture. In this system, the possible gas leakages are: (i) from the fuel reactor to the cyclone and to the pot-seal, (ii) from the cyclone down to the fuel reactor, (iii) from the pot-seal to the fuel reactor. These gas leakages were investigated in a scaled cold model. A typical leakage from the fuel reactor was 2%, i.e. a CO2 capture efficiency of 98%. No leakage was detected from the cyclone to the fuel reactor. Thus, all product gas from the air reactor leaves the system from the cyclone. A typical leakage from the pot-seal into the fuel reactor was 6%, which corresponds to 0.3% of the total air added to the system, and would give a dilution of the CO2 produced by approximately 6% air. However, this gas leakage can be avoided by using steam, instead of air, to fluidize the whole, or part of, the pot-seal. The disadvantages of diluting the CO2 are likely to motivate the use of steam.  相似文献   

18.
以Raney Ni为催化剂,在温和条件下(523~723 K)实现了苯酚催化水蒸气重整制氢反应。研究表明,反应温度、液体空速和原料浓度等反应条件是影响苯酚转化率和H2选择性的重要因素,较高的反应温度和较低的液体空速有利于提高苯酚转化率,但不利于提高H2选择性。对比苯酚水相重整制氢过程发现,尽管水蒸气重整反应温度相对较高,且需要汽化原料使反应在气相中进行,但该过程具有比水相重整更高的H2选择性(93%~100%)。此外,Raney Ni催化剂上苯酚水蒸气重整反应与现有的文献结果比较还具有反应条件温和、催化剂稳定性好(60h)以及CO含量低(CO/CO2摩尔比为0.01~0.2)等优点。将该技术应用于工业含酚有机废水的资源化处理制备的H2可以直接作为氢源使用。  相似文献   

19.
The steam gasification of solid biomass by means of the absorption enhanced reforming process (AER process) yields a high quality product gas with increased hydrogen content. The product gas can be used for a wide range of applications which covers the conventional combined heat and power production as well as the operation of fuel cells, the conversion into liquid fuels or the generation of synthetic natural gas and hydrogen. On the basis of a dual fluidized bed system, steam gasification of biomass is coupled with in situ CO2 absorption to enhance the formation of hydrogen. The reactive bed material (limestone) used in the dual fluidized bed system realizes the continuous CO2 removal by cyclic carbonation of CaO and calcination of CaCO3. Biomass gasification with in situ CO2 absorption has been substantially proven in pilot plant scale of 100 kW fuel input. The present paper outlines the basic principles of steam gasification combined with the AER process the investigations in reactive bed materials, and concentrates further on the first time application of the AER process on industrial scale. The first time application has been carried out within an experimental campaign at a combined heat and power plant of 8 MW fuel input. The results are outlined with regard to the process conditions and achieved product gas composition. Furthermore, the results are compared with standard steam gasification of biomass as well as with application of absorption enhanced reforming process at pilot plant scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号