首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The late transition metal catalyst of [2,6-diacethylpyridinebis(2,6-diisopropylphenylimine)]cobalt(II) dichloride was prepared under controlled conditions and used for polymerization of ethylene. Methylaluminoxane (MAO) and triisobuthylaluminum (TIBA) were used as a cocatalyst and a scavenger, respectively. The highest activity of the catalyst was obtained at about 30°C; the activity decreased with increasing temperature. At polymerization temperatures higher than 50°C not only was a sharp decrease in the activity observed but also low molecular weight polyethylene product that was oily in appearance was obtained. The polymerization activity increased with increasing both of the monomer pressure and [MAO]:[Co] ratio. However, fouling of the reactor was strongly increased with increasing both of the monomer pressure and the amount of MAO used for the homogeneous polymerization. Hydrogen was used as the chain transfer. The activity of the catalyst and the viscosity average molecular weight (Mv) of the polymer obtained were not sensitive to hydrogen concentration. However, the viscosity average molecular weight of the polymer decreased with the monomer pressure. The (Mv), the melting point, and the crystallinity of the resulting polymer at the monomer pressure of 1 bar and polymerization temperature of 20°C were 1.2 × 105, 133°C, and 67%, respectively. Heterogeneous polymerization of ethylene using the catalyst and the MAO/SiO2 improved morphology of the resulting polymer; however, the activity of the catalyst was also decreased. Fouling of the reactor was eliminated using the supported catalyst system.  相似文献   

2.
A supported iron‐based diimine catalyst (SC) was prepared by immobilization of 2,6‐bis[1‐(2,6‐diisopropylphenylimino)ethyl]pyridine iron chloride (I) on silica and employed in ethylene polymerization. The kinetic behavior of ethylene polymerization with SC was studied. The effects of the Al/Fe molar ratio, reaction temperature, and cocatalyst on the catalytic activity as well as the melting temperature, molecular weight, and morphology of the polymers obtained were also investigated. The results showed that good catalytic activities can be obtained even with a small amount of the cocatalyst methylaluminoxane (MAO) or triethylaluminum (AlEt3). The polyethylenes obtained with a supported catalyst had higher molecular weight, higher melting temperature, and better morphology than those obtained with a homogeneous catalyst. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 466–469, 2003  相似文献   

3.
Coordination polymerization of styrene with a ternary catalyst system composed of catalyst neodymium tricarboxylate (Nd), co‐catalyst Al(i‐Bu)3 (Al) and chlorinating agent trichloroethane (Cl) was carried out in cyclohexane. The effects of the catalyst system preparation procedure and of the reaction conditions on catalytic activity, molecular weight and molecular weight distribution of the resultant polymers were investigated. The catalytic activity depended mainly on the molar ratios of Al/Nd and of Cl/Nd and on the ageing temperature and polymerization temperature. High polymerization conversion and high catalytic activity could be obtained at high Al/Nd ratios and/or at high ageing temperature. The catalyst system exhibited high activity of 8.32 × 104 g polystyrene (mol Nd h)?1 at 50 °C. The molecular weight of the polymers obtained reached high weight‐average (Mw) values (Mw = 4.35 × 105 g mol?1) when Al/Nd = 8, but relatively low values (6000–11 000 g mol?1) at high Al/Nd ratios. Copyright © 2005 Society of Chemical Industry  相似文献   

4.
Ultra‐high‐molecular‐weight polyethylene (PE) with viscosity‐average molecular weight (Mv) of 3.1 × 106 to 5.2 × 106 was prepared with a heterogeneous Ziegler–Natta MgCl2 (ethoxide type)/TiCl4/triethylaluminum catalyst system under controlled conditions. The optimum activity of the catalyst was obtained at a [Al]/[Ti] molar ratio of 61 : 1 and a polymerization temperature of 60°C, whereas the activity of the catalyst increased with monomer pressure and decreased with hydrogen concentration. The titanium content of the catalyst was 2.4 wt %. The rate/time profile of the catalyst was a decay type with a short acceleration period. Mv of the PE obtained decreased with increasing hydrogen concentration and polymerization temperature. The effect of stirrer speeds from 100 to 400 rpm did not so much affect the catalyst activity; however, dramatic effects were observed on the morphology of the polymer particles obtained. A stirrer speed of 200 rpm produced PE with a uniform globulelike morphological growth on the polymer particles. The particle size distributions of the polymer samples were determined and were between 14 and 67 μm. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Branched polyethylene (PE) was prepared with a novel (α‐diimine)nickel(II) complex of 2,3‐bis(2,6‐dimethylphenyl)‐butanediimine nickel dichloride {[2,6‐(CH3)2C6H3? N?C(CH3)C(CH3)?N? 2,6‐(CH3)2C6H3]NiCl2} activated by methylaluminoxane in the presence of a single ethylene monomer. The influences of various polymerization conditions, including the temperature, Al/Ni molar ratio, Ni catalyst concentration, and time, on the catalytic activity, molecular weight, degree of branching, and branch length of PE were investigated. According to gel permeation chromatography, the weight‐average molecular weights of the polymers obtained ranged from 1.7 × 105 to 6.0 × 105, with narrow molecular weight distributions of 2.0–3.5. The degree of branching in the polymers rapidly increased with the polymerization temperature increasing; this led to highly crystalline to totally amorphous polymers, but it was independent of the Al/Ni molar ratio and catalyst concentration. At polymerization temperatures greater than 20°C, the resultant PE was confirmed by 13C‐NMR to contain significant amounts of not only methyl but also ethyl, propyl, butyl, amyl, and long branches (longer than six carbons). The formation of the branches could be illustrated by the chain walking mechanism, which controlled their specific spacing and conformational arrangements with one another. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1123–1132, 2002; DOI 10.1002/app.10398  相似文献   

6.
A series of novel nonmetallocene catalysts [N, O, P] with diphenyl phosphoroso ligands were synthesized by the treatment of phthaldialdehyde, substituted phenols, chlorodiphenyl phosphine with metal halides of TiCl4 and ZrCl4. The catalyst microstructure was characterized by 1H NMR and EA. After activated by methylaluminoxane (MAO), these [N, O, P] catalysts were utilized to catalyze the polymerization of ethylene and the copolymerization of ethylene with 1‐octene. The results indicated that the obtained catalysts were highly efficient for ethylene polymerization and ethylene/1‐octene copolymerization. Structures and properties of the obtained polymers were measured by WAXD, DSC, GPC, and 13C NMR. The results indicated that polyethylene catalyzed by Cat. 3 possessed the highest weight‐average molecular weight of 1.025 × 106 g/mol and the highest melting point of 136.3°C. The copolymer of ethylene/1‐octene catalyzed by Cat. 1 exhibited the highest 1‐octene incorporation content of 0.63 mol %. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42225.  相似文献   

7.
Ethylene polymerizations were performed using silica‐supported 2,6‐bis[1‐(2,6‐diisopropylphenylimino) ethyl] pyridine iron(II) dichloride with methylaluminoxane (MAO) as co‐catalyst. Silica was calcined at 600, 400 and 200 °C under vacuum for 8 h. The effect of calcination temperature of silica on the polymerization activity and the properties of the polymers obtained were examined. Catalyst–support interactions were examined by both a chemical method and XPS. It was observed that upon supporting the catalyst on the surface of silica, there is an increase in the binding energy of the metal center. However, no change in the metal binding energy was observed on supporting the catalyst to silica calcined at different temperatures. Ethylene polymerizations were performed using MAO as co‐catalyst. Catalysts were also prepared by first pretreating silica with MAO, followed by addition of the Fe(II) catalyst and contacting a complex of Fe(II) catalyst–MAO with silica previously calcined at 400 °C for 8 h. The results indicate that there is no chemical bonding between the support and the catalyst. Copyright © 2006 Society of Chemical Industry  相似文献   

8.
A new type of post‐metallocene polymerization catalyst based on titanium complexes with N,N‐dialkylcarbamato ligands was used to copolymerize ethylene and 1‐hexene. These easy‐to‐synthesize and stable complexes in combination with different organoaluminium co‐catalysts produce random ethylene/1‐hexene copolymers characterized by a broad molecular weight distribution and high 1‐hexene incorporation, as confirmed by SEC, DSC and 13C NMR analysis. The influence of the main reaction parameters on the polymerization reactions was studied including the type of catalyst components, solvent, temperature, the ethylene partial pressure and the [Al]/[Ti] ratio in the catalyst. A higher activity and a higher 1‐hexene incorporation were achieved with AlMe3‐depleted methylalumoxane as co‐catalyst and chlorobenzene as solvent. © 2013 Society of Chemical Industry  相似文献   

9.
Bulk polymerization of styrene (St) with an in‐situ‐activated Ziegler‐catalyst containing neodymium 2‐ethylhexyl phosphonate [Nd(P204)3], magnesium–aluminum alkyls and hexamethyl phosphoramide (HMPA) was studied. The new rare‐earth catalyst exhibited high activity for polymerization of styrene, and its catalytic efficiency reached 14 730 g PSt/g Nd. The influence of reaction parameters, such as Mg/Nd, Mg/Al, St/Nd molar ratios, temperature, etc, on the catalyst performance was examined in detail. The molecular weight of the resulting polystyrene is ultra‐high (MW = 40 × 104 ∼ 120 × 104 g mol−1) and the distribution of molecular weight is broad (MW/Mn = 2.1 ∼ 2.8). The microstructure of the polystyrene was characterized by IR and 13C NMR spectroscopies and found to be atactic. © 2001 Society of Chemical Industry  相似文献   

10.
Phthaldialdehyde and phthaldiketone were treated with substituted phenols of 2‐amino‐4‐methylphenol, 2‐amino‐5‐methylphenol and 2‐amino‐4‐t‐butylphenol, respectively, and then treated with transition metal halides of TiCl4, ZrCl4 and YCl3. A series of novel non‐metallocene catalysts (1–12) with phenoxy‐imine ligands was obtained. The structures and properties of the catalysts were characterized by 1H NMR and elemental analysis. The catalysts (1–12) were used to promote ethylene (co‐)polymerization after activation by methylaluminoxane. The effects of the structures and center atoms (Ti, Zr and Y) of these catalysts, polymerization temperature, Al/M (M = Ti, Zr and Y) molar ratio, concentration of the catalysts and solvents on the polymerization performance were investigated. The results showed that the catalysts were favorable for ethylene homopolymerization and copolymerization of ethylene with 1‐hexene. Catalyst 10 is most favorable for catalyzing ethylene homopolymerization and copolymerization of ethylene with 1‐hexene, with catalytic activity up to 2.93 × 106 gPE (mol Y)?1 h?1 for polyethylene (PE) and 2.96 × 106 gPE (mol Y)?1 h?1 for copolymerization of ethylene with 1‐hexene under the following conditions: polymerization temperature 50 °C, Al/Y molar ratio 300, concentration of catalyst 1.0 × 10?4 L?1 and toluene as solvent. The structures and properties of the polymers obtained were characterized by Fourier transform infrared spectroscopy, 13C NMR, wide‐angle X‐ray diffraction, gel permeation chromatography and DSC. The results indicated that the obtained PE catalyzed by 4 had the highest melting point of 134.8 °C and the highest weight‐average molecular weight of 7.48 × 105 g mol?1. The copolymer catalyzed by 4 had the highest incorporation of 1‐hexene, up to 5.26 mol%, into the copolymer chain. © 2012 Society of Chemical Industry  相似文献   

11.
A fluorinated FI Zr-based catalyst of bis[N-(3,5-dicumylsalicylidene)-2′,6′-flouroanilinato]zirconium(IV) dichloride was prepared and used for polymerization of ethylene. It was revealed that ortho-F-substituted phenyl ring on the N electronically plays a key role in the suppression of chain transfer reactions especially β-hydride transfer which resulted in an increase in the molecular weight of the obtained polymer and moderation of the catalyst activity as well. Methylaluminoxane (MAO) and triisobuthylaluminum (TIBA) were used as a cocatalyst and a scavenger, respectively. The catalyst showed the maximum activity at about [Al]:[Zr] = 32000:1 M ratio and further addition of MAO did not affect the activity of the catalyst. Ortho-F not only impressed the activity, but also reduced the [Al]:[Zr] molar ratio needed to reach the highest activity in comparison with the similar non-fluorinated FI catalysts. The highest activity of the prepared catalyst was obtained at 35 °C. At the monomer pressure of 3 bars polyethylene was obtained with the viscosity average molecular weight (M v) of 1.3 × 106 indicating the dramatic effect of ortho-F substitution on the polymerization mechanism. The polymerization was carried out using different amounts of hydrogen. Neither the activity of the catalyst nor the viscosity average molecular weight (M v) of the obtained polymer was sensitive to the hydrogen concentration. However, higher amount of hydrogen could slightly increase the activity of the catalyst.  相似文献   

12.
Reactor blends of ultrahigh‐molecular‐weight polyethylene (UHMWPE) and low‐molecular‐weight polyethylene (LMWPE) were synthesized by two‐step polymerization using a hybrid catalyst. To prepare the hybrid catalyst, styrene acrylic copolymer (PSA) was first coated onto SiO2/MgCl2‐supported TiCl3; then, (n‐BuCp)2ZrCl2 was immobilized onto the exterior PSA. UHMWPE was produced in the first polymerization stage with the presence of 1‐hexene and modified methylaluminoxane (MMAO), and the LMWPE was prepared with the presence of hydrogen and triethylaluminium in the second polymerization stage. The activity of the hybrid catalyst was considerable (6.5 × 106 g PE (mol Zr)?1 h?1), and was maintained for longer than 8 h during the two‐step polymerization. The barrier property of PSA to the co‐catalyst was verified using ethylene polymerization experiments. The appearance of a lag phase in the kinetic curve during the first‐stage polymerization implied that the exterior catalyst ((n‐BuCp)2ZrCl2) could be activated prior to the interior catalyst (M‐1). Furthermore, the melting temperature, crystallinity, degree of branching, molecular weight and molecular‐weight distribution of polyethylene obtained at various polymerization times showed that the M‐1 catalyst began to be activated by MMAO after 40 min of the reaction. The activation of M‐1 catalyst led to a decrease in the molecular weight of UHMWPE. Finally, the thermal behaviors of polyethylene blends were investigated using differential scanning calorimetry. Copyright © 2011 Society of Chemical Industry  相似文献   

13.
A nanosized silica particle was used as the support to prepare an Et[Ind]2ZrCl2/MAO catalyst for propylene polymerization of polypropylene. The catalyst and the polymer produced were characterized with nitrogen adsorption, ICP, DSC, SEM, TEM, XRD, solution viscometer, 13C NMR and optical microscopy. The effects of polymerization temperature and [Al]/[Zr] ratio on catalyst activity and polymer melting point were investigated. Under identical reaction conditions, nanosized catalyst exhibited better polymerization activity than the microsized catalyst (e.g., the former had 64% higher activity than the latter at the optimum polymerization temperature (50°C) and [Al]/[Zr] = 570). DSC results indicated that polymer melting point increased with the increase of [Al]/[Zr] ratio and with the decrease of polymerization temperature. XRD results showed that the percentage of γ crystals increased with decreasing [Al]/[Zr] ratio. Electron microscopic results showed that the polymer particle size increased with increasing polymerization temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2573–2580, 2006  相似文献   

14.
Homogeneous copolymerization of styrene and 1‐hexene was carried out in toluene at room temperature using bisindenyl ethane zirconium dichloride/methylaluminoxane (MAO). The supported catalyst was prepared with immobilization of Et(Ind)2ZrCl2/MAO on silica (calcinated at 500°C) with premixed method. Heterogeneous copolymerization of styrene/1‐hexene with different mole ratios was carried out in the presence of supported catalyst system. The copolymers obtained from homogeneous and heterogeneous catalyst system were characterized by 1H NMR and 13C NMR. Composition of the resulting copolymers was determined by 1H NMR data. Analysis of 13C NMR spectra of obtained copolymers by homogeneous and heterogeneous catalyst systems present isotactic olefin‐enriched copolymers. Molecular weight and thermal behavior of resulting copolymers was investigated. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 4008–4014, 2007  相似文献   

15.
[Me2C(Cp) (Ind)]ZrCl2 metallocene catalyst has been prepared and employed in a study of ethene polymerization in the presence of the cocatalyst methylaluminoxane. C1 and C2 signals are detected in the 13C NMR spectra of the resultant polymers; this reveals that the resultant polymer is a branched polyethene (polyethylene). The influence of polymerization temperature, catalyst concentration and [Al]/[Zr] ratio on catalytic activities and polymerization kinetics is investigated. A plausible mechanism for forming branched polyethene is suggested. © 2000 Society of Chemical Industry  相似文献   

16.
Styrene polymerization was carried out by a simple half-titanocene complex [cyclopentadienyltitanium trichloride] (CpTiCl3) and pentamethyl [cyclopentadienyltitanium trichloride] (Cp*TiCl3) combined with methylaluminoxane (MAO) as a cocatalyst. The effects of addition of 2,6-diisopropylphenol on the catalytic activity of the above catalytic systems and the microstructure of the resulting polymer were investigated. The results of the above experiments showed that the addition of the 2,6-diisopropylphenol changed the catalytic performance of the above catalytic systems, in terms of catalytic activity of the metal complexes and microstructure, molecular weight and molecular weight distribution of polystyrene synthesized. The yields of polystyrene of the above polymerization reactions indicated that the 2,6-diisopropylphenol enhanced the catalytic activity of both the CpTiCl3/MAO and Cp*TiCl3/MAO catalyst systems. Further Soxhlet extraction of the polymer was conducted by boiling acetone for 6 h to get pure syndiotactic polystyrene. The microstructure of polystyrene obtained by the above polymerization reactions was investigated by 13C NMR, GPC and DSC. Results indicated the formation of syndiotactic polystyrene in the absence of phenol and in low concentration of phenol. On the other hand, in the presence of excess phenol, the polystyrene produced was found to be completely atactic in nature. The appearance of monomodal peaks and narrow polydispersity in the GPC results of polystyrenes obtained in all the above polymerizations indicated that the polymerization was only coordination in nature.  相似文献   

17.
The synthesis of syndiotactic polystyrene (sPS) catalyzed with Cp*Ti(OBz)3/MAO/TIBA and toluene as the solvent and the effects of polymerization temperature and the external addition of TIBA on polymerization behavior were investigated. The study revealed that catalytic activity increased with polymerization temperature. The greatest activity, 619 kg sPS mol?1 Ti h?1, was exhibited up to 90°C. TIBA also improved catalytic activity. The molecular weight of the polymer obtained decreased with polymerization temperature and the amount of TIBA. The structure and properties of syndiotactic polystyrene were characterized by 13C‐NMR, FTIR, DSC, and GPC methods. It was confirmed that the sPS obtained featured all‐trans planar zigzag conformation and higher syndiotacticity, molecular weight, and melting point. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 501–505, 2007  相似文献   

18.
A new stereoregular polybutene‐1 was synthesized with a novel catalyst precursor η5‐pentamethyl cyclopentadienyl titanium tribenzyloxide (CpTi(OBz)3) and methylaluminoxane (MAO). The effects of polymerization conditions on the catalytic activity, molecular weight and stereoregularity of the products were investigated in detail. It was found the catalyst exhibited highest activity of 91.2 kgPB mol Ti−1 h−1 at T = 30 °C, Al/Ti = 200. The catalytic activity and molecular weight were sensitive to the Al/Ti (mole/mole), polymerization temperature; they also depended on the Ti concentration. The molecular weight of the products increased with decreasing temperature. The structure and properties of the polybutene‐1 were characterized by 13C NMR, GPC, DSC and WAXD. The result showed the microstructure of polybutene‐1 extracted by boiling heptane was stereoregular, whereas the ether‐soluble fraction was atactic. The molecular weight of polybutene‐1 was over one million g mol−1 and its molecular weight distribution ( M w/ M n) was from 1.1 to 1.2. © 2001 Society of Chemical Industry  相似文献   

19.
The ligands, 2,6-bis(NH-benzimidazol-2-yl)pyridine (L1) and 2,6-bis(N-methyl-benzimidazol-2-yl)pyridine (L2), were synthesized by a one-step reaction of 2,6-pyridinedicarboxylic acid with a diamine (o-phenylenediamine or N-methyl-1,2-phenylenediamine), respectively, in syrupy phosphoric acid at ca. 200 °C. Their efficiency as a catalyst in Cu-based atom transfer radical polymerizations (ATRP) of methylmethacrylate (MMA) was investigated. The linear first-order kinetic plots were observed; indicating that the number of active species is constant during the polymerization and termination reactions are limited. The apparent rate constant values of ATRP of MMA with CuCl/L1 catalyst system at 90 °C in acetonitrile were found to be between 3.83 × 10?5 and 1.33 × 10?4 s?1, while they were between 1.86 × 10?4 and 4.40 × 10?4 s?1 in the case of CuCl/L2 catalyst, indicating the presence of lower radical concentration throughout the polymerization of MMA using CuCl/L1 catalyst system. In both the cases, low apparent rate constant values are obtained. This indicates that ATRP proceeded at reasonable rates and a good control over ATRP in general. Apparent rate constant vs [ligand]/[catalyst] ratio plots showed a maximum at the [ligand]/[catalyst] ratio of two. M n,GPC values increased slightly linearly with conversion and molecular weight values were closer to M n,th in the case of ATRP of MMA using CuCl/L2 catalyst complex. Cyclic voltammetry measurements confirmed that CuCl/L1 and CuCl/L2 complexes in acetonitrile give reversible redox couples and copper(I) centers in CuCl/L1 and CuCl/L2 catalyst complexes that are readily oxidized and they potentially suit to facile ATRP.  相似文献   

20.
A mesoporous molecular sieve MCM‐41 supported iron‐based diimine catalyst ( MC ) was prepared for the first time. The kinetic behavior of ethylene polymerization with MC was studied. The effects of Al/Fe molar ratio and various cocatalysts on the catalytic activity and properties of the polyethylene obtained were investigated. The results showed that good catalytic activities can be reached with cocatalyst methylaluminoxane (MAO) and triethylaluminium (TEA). Ethylene polymerization with MC gave polymers with higher molecular weight, melting temperature and onset temperatures of decomposition (Tonset) and better morphology than those obtained with the corresponding homogeneous catalyst. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号