首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A three‐dimensional (3‐D) computational fluid dynamics model, coupled with population balance (CFD‐PBM), was developed to describe the gas–solid two‐phase flow in fluidized‐bed polymerization reactors. The model considered the Eulerian–Eulerian two‐fluid model, the kinetic theory of granular flow, the population balance, and heat exchange equations. First, the model was validated by comparing simulation results with the classical calculated data. The entire temperature fields in the reactor were also obtained numerically. Furthermore, two case studies, involving constant solid particle size and constant polymerization heat or evolving particle‐size distribution, polymerization kinetics, and polymerization heat, were designed to identify the model. The results showed that the calculated results in the second case were in good agreement with the reality. Finally, the model of the second case was used to investigate the influences of operational conditions on the temperature field. © 2011 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

2.
With computational fluid dynamics (CFD) it is possible to get a detailed view of the flow behaviour of the fluidized beds. A profound and fundamental understanding of bed dynamics such as bed pressure drop, bed expansion ratio, bed fluctuation ratio, and minimum fluidization velocity of homogeneous binary mixtures has been made in a semi‐cylindrical fluidized column for gas–solid systems, resulting in a predictive model for fluidized beds. In the present work attempt has been made to study the effect of different system parameters (viz., size and density of the bed materials and initial static bed height) on the bed dynamics. The correlations for the bed expansion and bed fluctuations have been developed on the basis of dimensional analysis using these system parameters. Computational study has also been carried out using a commercial CFD package Fluent (Fluent, Inc.). A multifluid Eulerian model incorporating the kinetic theory for solid particles was applied in order to simulate the gas–solid flow. CFD simulated bed pressure drop has been compared with the experimental bed pressure drops under different conditions for which the results show good agreements.  相似文献   

3.
Particle‐resolved direct numerical simulations (PR‐DNS) of a simplified experimental shallow fluidized bed and a laboratory bubbling fluidized bed are performed by using immersed boundary method coupled with a soft‐sphere model. Detailed information on gas flow and individual particles’ motion are obtained and analyzed to study the gas–solid dynamics. For the shallow bed, the successful predictions of particle coherent oscillation and bed expansion and contraction indicate all scales of motion in the flow are well captured by the PD‐DNS. For the bubbling bed, the PR‐DNS predicted time averaged particle velocities show a better agreement with experimental measurements than those of the computational fluid dynamics coupled with discrete element models (CFD‐DEM), which further validates the predictive capability of the developed PR‐DNS. Analysis of the PR‐DNS drag force shows that the prevailing CFD‐DEM drag correlations underestimate the particle drag force in fluidized beds. The particle mobility effect on drag correlation needs further investigation. © 2016 American Institute of Chemical Engineers AIChE J, 62: 1917–1932, 2016  相似文献   

4.
An experimental and computational study is presented on the hydrodynamic characteristics of FCC particles in a turbulent fluidized bed. Based on the Eulerian/Eulerian model, a computational fluid dynamics (CFD) model incorporating a modified gas‐solid drag model has been presented, and the model parameters are examined by using a commercial CFD software package (FLUENT 6.2.16). Relative to other drag models, the modified one gives a reasonable hydrodynamic prediction in comparison with experimental data. The hydrodynamics show more sensitive to the coefficient of restitution than to the flow models and kinetics theories. Experimental and numerical results indicate that there exist two different coexisting regions in the turbulent fluidized bed: a bottom dense, bubbling region and a dilute, dispersed flow region. At low‐gas velocity, solid‐volume fractions show high near the wall region, and low in the center of the bed. Increasing gas velocity aggravates the turbulent disorder in the turbulent fluidized bed, resulting in an irregularity of the radial particle concentration profile. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

5.
气相聚合过程以流化床为核心反应器,其混合、传递和化学反应过程规律对工艺研发具有指导意义。计算流体力学是一种模拟流体流动的方法,可节省大量人力和物力并提供更全面的反应过程信息,在气固流态化领域得到广泛应用。基于计算流体力学的流态化模拟的难点在于如何建立能够恰当描述颗粒团聚过程的曳力模型,关于热量传递甚至聚合反应过程的模拟工作都是基于此发生的。随着计算机运算能力的提高,研究工业尺度的流化床反应器以及由粒径分布而带来的传递过程的影响可能成为模型广度及深度发展的方向。  相似文献   

6.
This literature survey focuses on the application of computational fluid dynamics (CFD) in various aspects of the fluidized bed reactor. Although fluidized bed reactors are used in various industrial applications, this first-of-its-kind review highlights the use of CFD on polyolefin production. It is shown that CFD has been utilized for the following mechanisms of polymerization: governing of bubble formation, electrostatic charge effect, gas–solid flow behavior, particle distribution, solid–gas circulation pattern, bed expansion consequence, mixing and segregation, agglomeration and shear forces. Heat and mass transfer in the reactor modeling using CFD principles has also been taken under consideration. A number of softwares are available to interpret the data of the CFD simulation but only few softwares possess the analytical capability to interpret the complex flow behavior of fluidization. In this review, the popular softwares with their framework and application have been discussed. The advantages and feasibility of applying CFD to olefin polymerization in fluidized beds were deliberated and the prospect of future CFD applications was also discussed.  相似文献   

7.
A kind of new modified computational fluid dynamics‐discrete element method (CFD‐DEM) method was founded by combining CFD based on unstructured mesh and DEM. The turbulent dense gas–solid two phase flow and the heat transfer in the equipment with complex geometry can be simulated by the programs based on the new method when the k‐ε turbulence model and the multiway coupling heat transfer model among particles, walls and gas were employed. The new CFD‐DEM coupling method that combining k‐ε turbulence model and heat transfer model, was employed to simulate the flow and the heat transfer behaviors in the fluidized bed with an immersed tube. The microscale mechanism of heat transfer in the fluidized bed was explored by the simulation results and the critical factors that influence the heat transfer between the tube and the bed were discussed. The profiles of average solids fraction and heat transfer coefficient between gas‐tube and particle‐tube around the tube were obtained and the influences of fluidization parameters such as gas velocity and particle diameter on the transfer coefficient were explored by simulations. The computational results agree well with the experiment, which shows that the new CFD‐DEM method is feasible and accurate for the simulation of complex gas–solid flow with heat transfer. And this will improve the farther simulation study of the gas–solid two phase flow with chemical reactions in the fluidized bed. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

8.
A computational fluid dynamics model, coupled with population balance model (CFD–PBM), was developed to describe the liquid–solid two-phase flow in a pilot-plant tubular loop propylene polymerization reactor. The model combines the advantage of CFD to calculate the entire flow field and that of PBM to calculate the particle size distribution (PSD). Particle growth, aggregation and breakage were taken into account to describe the evolution of the PSD. The model was first validated by comparing simulation results with the classical calculated data. Furthermore, four cases studies, involving particle aggregation, particle breakage, particle growth or involving particle growth, breakage and aggregation, were designed to identify the model. The entire flow behavior and PSD in the tubular loop reactor, i.e. PSD, solid holdup and liquid phase velocity distribution, were also obtained numerically. The results showed that the model is effective in describing the entire flow behavior and in tracking the evolution of the PSD.  相似文献   

9.
The effects of sound assistance on fluidization behaviors were systematically investigated in a gas–solid acoustic fluidized bed. A model modified from Syamlal–O'Brien drag model was established. The original solid momentum equation was developed and an acoustic model was also proposed. The radial particle volume fraction, axial root‐mean‐square of bed pressure drop, granular temperature, and particle velocity in gas–solid acoustic fluidized bed were simulated using computational fluid dynamics (CFD) code Fluent 6.2. The results showed that radial particle volume fraction increased using modified drag model compared with that using the original one. Radial particle volume fraction was revealed as a parabolic concentration profile. Axial particle volume fraction decreased with the increasing bed height. The granular temperature increased with increasing sound pressure level. It showed that simulation values using CFD code Fluent 6.2 were in agreement with the experimental data. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

10.
A Eulerian–Eulerian model incorporating the kinetic theory of granular flow was applied to describe the gas–solid two-phase flow in fluidized bed polymerization reactors. The model parameters were examined, and the model was validated by comparing the simulation result with the classical calculated data. The effects of distributor shape, solid particle size, operational gas velocity and feed manner on the flow behavior in the reactor were also investigated numerically. The results show that with the increase of solid particle diameter, the bubble numbers decrease and the bubble size increases, resulting in a smaller bed expansion ratio. Bed expansion ratio increases with increasing the gas inlet velocity. Moreover, the final fluidized qualities are almost the same for the plane distributor case and the triangle distributor case. There exists a tempestuous wiggle from side to side in the bed at the continuous feed manner, which could not be obtained at a batch feed manner.  相似文献   

11.
A coupled‐single‐particle and Monte Carlo model was used to simulate propylene polymerization. To describe the effects of intraparticle transfer resistance on the polymerization kinetics, the polymeric multilayer model (PMLM) was applied. The reaction in each layer of the PMLM was described with the Monte Carlo method. The PMLM was solved together with the Monte Carlo model. Therefore, the model included the factors of the mass‐ and heat‐transfer resistance as well as the stochastic collision nature of the polymerization catalyzed with single‐site‐type/multiple‐site‐type catalysts. The model presented results such as the polymerization dynamics, the physical diffusion effect, and the polymer molecular weight and its distribution. The simulation data were compared with the experimental/actual data and the simulation results from the uniform Monte Carlo model. The results showed that the model was more accurate and offered deeper insight into propylene polymerization within such a microscopic reaction–diffusion system. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
C. Yang  Y. Duan 《化学工程与技术》2013,36(11):1907-1914
The domain coverage method (DCM) is proposed to establish a computational fluid dynamics‐discrete element method (CFD‐DEM) model based on irregular mesh. The gas field was solved by Fluent software and the DEM model was coupled with Fluent software by user‐defined functions. Gas turbulent viscosity was calculated by the coupled k‐? two‐equation model and the soft‐sphere collision model was used to get particle contact force. The CFD‐DEM model based on irregular mesh was firstly verified to be reasonable by comparing the simulated injected bubble with that simulated by Bokkers et al. The solid exchange behavior was studied numerically in a 2D dual‐leg fluidized bed (DL‐FB). The simulation results were compared with experimental results and proved that the CFD‐DEM model is established successfully based on the efficient DCM. The DEM model is expanded to be used on irregular mesh in fluidized beds with complex geometries.  相似文献   

13.
The effect of inclination angle of a packed bed on its corresponding gas–liquid flow segregation and liquid saturation spatial distribution was measured in co‐current descending gas–liquid flows for varying inclinations and fluid velocities, and simulated using a two‐phase Eulerian computational fluid dynamics framework (CFD) adapted from trickle‐bed vertical configuration and based on the porous media concept. The model predictions were validated with our own experimental data obtained using electrical capacitance tomography. This preliminary attempt to forecast the hydrodynamics in inclined packed bed geometries recommends for the formulation of appropriate drag force closures which should be integrated in the CFD model for improved quantitative estimation.  相似文献   

14.
The fluidization velocity and mean particle size were selected to be numerically investigated pertaining to their effects on the gas–particle circulation pattern within a fluidized bed granulator by three-dimensional computational fluid dynamics (CFD) simulation applying an Eulerian–Eulerian two-fluid model. The CFD simulations were designed by full factorial design method and the developed CFD model was experimentally validated. The fluidization process was proved to reach a quasi-steady state. The gas–particle circulation pattern and particle concentration distribution were analyzed based on fluidization velocity and mean particle size. A mathematical model was developed to provide guidance on how to change fluidization level during one experiment.  相似文献   

15.
16.
In order to enhance the uniformity of the radial solids distribution and thereby the performance of industrial circulating fluidized‐bed (CFB) risers, an approach by using the air jet from the riser circumference is proposed. The Eulerian‐Eulerian computational fluid dynamics (CFD) model with the kinetic theory of granular flow is adopted to simulate the gas‐solids two‐phase flow in a CFB riser with fluid catalytic cracking (FCC) particles. The numerical results indicate that by employing the circumferential air jet approach under appropriate jet velocities, the maximum solids concentration in the near‐wall region can be greatly reduced, the entrance region can be shortened, and the uniformity of the flow structure can be significantly improved.  相似文献   

17.
Fluidized‐bed reactors are widely used in the biofuel industry for combustion, pyrolysis, and gasification processes. In this work, a lab‐scale fluidized‐bed reactor without and with side‐gas injection and filled with 500–600 μm glass beads is simulated using the computational fluid dynamics (CFD) code Fluent 6.3, and the results are compared to experimental data obtained using pressure measurements and 3D X‐ray computed tomography. An initial grid‐dependence CFD study is carried out using 2D simulations, and it is shown that a 4‐mm grid resolution is sufficient to capture the time‐ and spatial‐averaged local gas holdup in the lab‐scale reactor. Full 3D simulations are then compared with the experimental data on 2D vertical slices through the fluidized bed. Both the experiments and CFD simulations without side‐gas injection show that in the cross section of the fluidized bed there are two large off‐center symmetric regions in which the gas holdup is larger than in the center of the fluidized bed. The 3D simulations using the Syamlal‐O'Brien and Gidaspow drag models predict well the local gas holdup variation throughout the entire fluidized bed when compared to the experimental data. In comparison, simulations with the Wen‐Yu drag model generally over predict the local gas holdup. The agreement between experiments and simulations with side‐gas injection is generally good, where the side‐gas injection simulates the immediate volatilization of biomass. However, the effect of the side‐gas injection extends further into the fluidized bed in the experiments as compared to the simulations. Overall the simulations under predict the gas dispersion rate above the side‐gas injector. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

18.
CFD–Discrete Element Method (DEM) model is an effective approach for studying dense gas–solid flow in fluidized beds. In this study, a CFD–DEM model for complex geometries is developed, where DEM code is coupled with ANSYS/Fluent software through its User Defined Function. The Fluent Eulerian multiphase model is employed to couple with DEM, whose secondary phase acts as a ghost phase but just an image copy of DEM field. The proposed procedure preserves phase conservation and ensures the Fluent phase-coupled SIMPLE solver work stable. The model is used to simulate four typical fluidization cases, respectively, a single pulsed jet fluidized bed, fluidized bed with an immersed tube, fluidization regime transition from bubbling to fast, and a simplified two-dimensional circulating fluidized bed loop. The simulation results are satisfactory. The present approach provides an easily implemented and reliable method for CFD–DEM model on complex geometries.  相似文献   

19.
Trickle‐bed reactors (TBRs), which accommodate the flow of gas and liquid phases through packed beds of catalysts, host a variety of gas–liquid–solid catalytic reactions, particularly in the petroleum/petrochemical industry. The multiphase flow hydrodynamics in TBRs are complex and directly affect the overall reactor performance in terms of reactant conversion and product yield and selectivity. Non‐ideal flow behaviours, such as flow maldistribution, channelling or partial catalyst wetting may significantly reduce the effectiveness of the reactor. However, conventional TBR modelling approaches cannot properly account for these non‐ideal behaviours owing to the complex coupling between fluid dynamics and chemical kinetics. Recent advances in the application of computational fluid dynamics (CFD) to three‐phase TBR systems have shown promise of achieving a deeper understanding of the interactions between multiphase fluid dynamics and chemical reactions. This study is intended to give a state‐of‐the‐art overview of the progress achieved in the field of CFD simulation of TBRs over the past two decades. The fundamental modelling framework of multiphase flow in TBRs, advances in important constitutive models, and the application of CFD models are discussed in detail. Directions for future research are suggested.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号