首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《广州化工》2021,49(15)
非对称超级电容器(ASCs)是由两个不同的电极组成,因其可使器件的工作电压最大化,从而提高其能量密度,而备受关注。二氧化锰(MnO_2)的理论比电容高、价格低、储量丰富和环境友好性等特征,是一种理想的超级电容器活性电极材料。本文综述了ASCs的组装原则及MnO_2水系、固态非对称超级电容器的研究进展,并展望了提高MnO_2基超级电容器能量密度的研究策略。  相似文献   

2.
本文采用青岛翰博科技有限公司提供的Li4Ti5O12电极材料和自制的AC/Li4Ti5O12复合电极材料分别与活性炭(AC)组装非对称型超级电容器,考察了恒流充放电等电容器性能。结果表明,在电流密度5 mA/cm2(289 mA/g)下,Li4Ti5O12/AC非对称型超级电容器的容量密度、能量密度、功率密度分别为51 F/g、56 Wh/kg、809 W/kg,高于对称型超级电容器(AC/AC)的电化学性能;并且当AC/Li4Ti5O12复合电极中Li4Ti5O12含量为30%时,AC/Li4Ti5O12/AC非对称型超级电容器的能量密度和功率密度相对较高,分别为117 Wh/Kg、760 W/Kg。  相似文献   

3.
超级电容器具有高比电容、工作电压范围广、环境友好、高能量密度和高功率密度等特性,作为一种新型的储能器件被广泛应用到各种领域。本文介绍了超级电容器的组成,储能原理以及电极材料的分类,而超级电容器研究热点集中在电极材料上,并对电极材料的发展趋势进行了展望。  相似文献   

4.
以6 mol/L KOH水溶液为电解液,高比表面积的活性炭为活性物质,研究了有机添加剂对体系润湿性、电导率、工作电压窗口及阻抗的影响,测试了超级电容器的电化学性能。结果表明,适量添加有机添加剂可明显抑制体系的极化现象,提高超级电容器的工作电压窗口。添加10vol%异丙醇时,电极材料和电解液间的润湿性大幅提高,比电容从79.3 F/g提高至113.2 F/g。添加20vol%异丙醇时,超级电容器的能量密度达19.4 Wh/kg,体系的电荷转移电阻明显降低,在10 A/g电流密度下的比电容比0.5 A/g时下降13.9%,而不加添加剂时下降30.3%。添加30vol%异丙醇时,电解液电导率迅速下降,比电容降低,电导率是影响比电容的关键因素。  相似文献   

5.
介绍了超级电容器是一种新型的绿色能量存储装置,具有高功率、良好循环寿命和工作温度范围广等优点,但是其能量密度较低,甚至达不到新型锂离子电池能量密度的十分之一,成为了限制超级电容器应用的主要问题。文章指出传统超级电容器能量密度限制因素包括:仅电极表面活性物质参与反应,电极电势充放电过程中会不断变化,以及充电过程中电解液离子的消耗等。减少电解液中离子的消耗与提升电极容量成为了解决能量密度较低的有效措施,目前研究的重点包括采用混合型结构、锂离子型结构的超级电容器等。文章指出锂离子电容器结合了传统双电层电容器和锂离子电池的优势,在保持高功率密度的同时提升了能量密度,是一种极具发展前景的混动和纯电动汽车电源。由于预嵌锂的负极也可作为锂的来源,因而锂离子电池可以选择更多的正极材料,从而开启了锂离子电池研究的新大门。  相似文献   

6.
随着电动汽车和智能器件的快速发展,超级电容器的体积性能相比于质量性能越来越受到人们的关注。为了提高超级电容器的体积能量密度,人们研究了各种新型电极材料,并对其体积性能进行了详细的分析和评价。高密度电极作为超级电容器的核心器件,其具备较高的体积能量密度和优越的倍率能力是提高能量存储的关键。石墨烯具有独特的物理化学性质,被广泛认为是超级电容器理想的电极材料,然而其孔隙率和堆叠密度之间的矛盾制约着超级电容器的体积能量密度。为了平衡石墨烯电极材料的孔隙率和堆叠密度之间的矛盾,人们开展了大量的研究。本文介绍了近年来以致密石墨烯材料作为超级电容器电极的研究进展。从孔隙尺寸、孔隙连接性和复合材料的角度分析不同致密石墨烯基电极材料的设计,并介绍了不同的高能量密度超级电容器的石墨烯基电极材料的制备途径。  相似文献   

7.
综述了柔性固态非对称超级电容器关键元器件和材料的研究现状,重点介绍了柔性固态非对称超级电容器体系的材料选择与性能改善方面的研究进展,其中包括碳材料/过渡金属化合物材料和过渡金属氧化物/过渡金属氧化物材料等。同时还综合分析了选择不同材料体系的柔性固态非对称超级电容器结构与性能,并对该领域的发展趋势进行了展望。  相似文献   

8.
叶成玉  颜冬  陆安慧  李文翠 《化工进展》2019,38(3):1283-1296
锂离子电容器(lithium ion capacitor,LIC)是一种新型的电化学储能器件,可以填补锂离子电池和超级电容器两者之间的性能空白,是下一代高能量密度超级电容器的前进方向。本文首先介绍了锂离子电容器的储能原理分为电解液消耗机制、锂离子交换机制以及混合机制,并围绕高能量密度的有机介质体系锂离子电容器,着重阐述了各类电容及电池型正负极材料的性质特点、优化方向及其研究现状,指出不同材料的优缺点及改性方法。同时叙述了与产业应用相关的预嵌锂技术、隔膜、电解液以及体系匹配等方面的研究现状,总结归纳了这些部件的研究对于比能量、功率、安全、稳定性等性能的提升。在产业化应用方面,针对锂离子电容器不同于锂离子电池和传统超级电容器的性能指标,总结其在智能物流、起重机电源、机器人电源及轨道交通等方面独特的应用前景。最后展望了电极材料微观结构优化及功能集成、电解液专用化,预嵌锂成本进一步压缩、以及检测及原位表征方法的开发等锂离子电容器未来的发展方向。  相似文献   

9.
王正杰  时志强 《山东化工》2023,(20):95-97+102
超级电容器作为一种新型储能器件,具有快速充放电,高功率密度,长循环寿命的优势,在混合电动汽车、机械设备、智能电网等领域具有广泛的应用,但是较低的能量密度限制了其进一步发展。电极材料是超级电容器重要的组成成分,而碳材料由于其储量丰富、结构多样、成本低廉,是目前超级电容器使用最多的电极材料。在众多碳材料中,中间相炭微球(MCMBs)作为锂离子电池常用的负极材料,在超级电容器中也具有广泛的应用。本文综述了MCMB的制备,改性方法及其在超级电容器中的应用进展。  相似文献   

10.
非对称超级电容器(ASCs)因电化学性能更为优异而成为近几年来的研究热点,石墨烯作为一种新颖的二维碳材料,具有比表面积大、导电性高、力学性能好和化学稳定性优异等优点,是非对称超级电容器复合电极的一类理想载体材料。本文综述了近几年来石墨烯基复合电极在非对称超级电容器中的应用状况,认为比表面积更大、导电性更好的石墨烯将会促进石墨烯基复合电极在超级电容器中的应用与发展,也会提高石墨烯基非对称超级电容器的性能。指出将金属氧化物、导电聚合物、金属氢氧化物以及金属硫化物纳米化,使之兼具大的有效面积、丰富的氧化还原活性位点等特点,从而提高复合材料的比电容,是石墨烯基复合电极的研究重点。  相似文献   

11.
《化学试剂》2021,43(9):1161-1170
超级电容器是一种具有高的功率密度、良好的循环稳定性和快的充放电速率的储能器件。与传统的电容器相比,由于受到较高的成本和较低能量密度的限制,超级电容器目前仍很难替代传统能源。在此前提条件下,寻求一种电化学储能能力更强、成本更低的电极材料是目前超级电容器电极材料的研究重点。二氧化锰由于其价格低廉、来源广泛和能量密度高的优点成为当前研究最为广泛的电极材料之一。该文以二氧化锰基的纳米复合材料为研究对象,从二氧化锰的制备与改性方法的角度出发,总结了当前二氧化锰基的纳米复合材料在超级电容器方面的应用研究进展,并对未来的发展趋势提出了展望。  相似文献   

12.
周洲  袁峻  乔志军 《广东化工》2016,(9):161-162
超级电容器又称电化学电容器,是一种比传统电容器能量密度高,比二次电池功率密度高的新型储能装置。目前被广泛应用于消费电子、交通工具、军事等多个领域。电极材料作为超级电容器的核心部件,决定着整个器件的电化学性能。文章综述了二氧化锰(Mn O2)基超级电容器的研究进展,指出了其未来发展方向。  相似文献   

13.
本发明为一种车用启动超级电容器,超级电容器芯子由包裹隔膜的烧结式氧化镍正极片,连续化活性碳纤维布负极和集流支撑的薄镍片构成。电容芯子通过制作、焊接电流端子后,置于塑料壳体内,注入电解液,封口便得超级电容器成品。该超级电容器具有较高的功率密度和能量密度,且质量轻,成本低,寿命长,适合做各种类型车辆的启动能源,推广应用具有很好价值。  相似文献   

14.
出于简化制备过程,降低生产成本,利于小型企业生产超级电容器的目的,通过简易的制备方法,利用活性炭、石墨毡、钛箔、甲基磺酸、LiClO4/乙腈溶液等原材料制作实用型超级电容器,测试其充放电性能。研究结果表明甲基磺酸不适合用作该超级电容器的电解液,而用LiClO4/乙腈电解液的超级电容器在0~2.0V电位窗口内表现出优异的充放电性能;但是当电位窗口提高至0~2.5V后,充放电效率明显降低。因此,本方法制作的超级电容器在合适的工作电压下具有重要的实际应用价值,对于小型企业生产超级电容器,降低生产成本具有十分重要的参考价值。  相似文献   

15.
《广州化工》2021,49(14)
活性炭作为超级电容器电极材料,具有众多优点,但还存在着能量密度低的特点。电极的能量密度反应了超级电容器的放电能力,为了提高活性炭电极材料的能量密度,增加其比电容是目前研究的重点。本文介绍了表面掺杂O、N、P、B等元素以及其他元素共掺杂改性活性炭,详细的阐述了各元素掺杂对活性炭表面性质及其电化学性能的影响,为提高活性炭电化学性能提供了参考。  相似文献   

16.
《超硬材料工程》2021,(6):51-51
超级电容器是一种具有充放电速度快、循环寿命超长的储能设备,但是能量密度很低。在众多超级电容器材料中,碳材料由于显著的环境优势和可持续性受到广泛关注。对碳材料的研究重点多为创造高比表面积并已取得了很好的效果,但为了获得更高的能量密度,提升活性物质的质量密度也是重要方式。此外,以往研究中利用石墨烯相关结构的开放框架结构已经开发出了能量为110 W h/L、功率为1 kW/L的超级电容器。然而这在能量密度方面仍然与电池具有差距,需要进一步研究并开发更高性能的碳基材料。  相似文献   

17.
超级电容器是一种介于传统电容器与化学电源之间的新型储能元件,它具有充电时间短、循环寿命长、功率密度大、能量密度高、适用温度范围宽和经济环保等优势,目前在很多领域都受到广泛关注。本文概述了超级电容器电极材料的研究情况,包括碳基材料、金属氧化物材料及导电聚合物材料等。  相似文献   

18.
陈泳  马妍楠  徐成 《化工进展》2022,41(5):2537-2545
采用商用活性炭(AC)吸附二元混合染料亚甲基蓝(MB)和胭脂红(AR18),制备得到AC/(MB+AR18)电极材料。比较单一活性炭(AC)和吸附不同浓度的二元混合染料后的活性炭[AC/(MB+AR18)]的电化学性能。三电极体系的测试结果表明:在1mol/L H2SO4电解液中,当电流密度为1A/g时,吸附了浓度为400mg/L污染物的AC/(MB+AR18)比电容为182F/g,高于单一AC的比电容(109F/g)。随后选用性能最优的AC/(MB+AR18)-400作为电极材料,组装对称超级电容器器件,发现工作电压窗口从只用AC组装的对称超级电容器的1.1V提高到1.5V,电流密度为0.75A/g时,功率密度为843.84W/kg,能量密度可达32.23W·h/kg,远远高于AC组装的超级电容器(4.74W·h/kg),说明MB和AR18不仅为AC提供额外的法拉第电容,同时有助于提高其工作电压窗口。  相似文献   

19.
<正>英国研究人员研发出一种新型塑料电解质替换现有电池,这种新型塑料电解质电容量是目前超级电容器的1 000倍,甚至10 000倍,这使得手机和电脑"秒充电"有望在两年内成为现实。与传统意义上的电池不同,超级电容器利用电极和电解质存储能量,充电蓄电相当快速。尽管如此,低能量密度是其主要缺陷,超级电容器每千克存储能量相当  相似文献   

20.
胡涛  张熊  安亚斌  李晨  马衍伟 《化工学报》2020,71(6):2530-2546
锂离子电容器是一种采用电容型正极材料、电池型负极材料进行组装的储能器件,结合了锂离子电池与超级电容器两者的优点,兼具高能量密度、高功率密度和长循环寿命。但是由于锂离子电容器还存在正负极动力学过程以及容量不匹配的问题,大大影响了锂离子电容器的电化学性能。通常锂离子电容器的功率密度取决于负极材料,而能量密度取决于正极材料,因此为提高锂离子电容器的能量密度,还需发展具有高比容量和高导电性的正极材料。目前,碳材料因具有低成本、来源广泛、高比表面积和丰富的孔道结构等特点,是一种极具应用潜力的电极材料。综述并分析了各种碳材料(包括活性炭、模板炭、石墨烯和生物炭等)作为锂离子电容器正极材料的电化学性能与优缺点,最后对锂离子电容器正极材料的研究提出了建议与展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号