首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
研究聚氨酯(PU)树脂/丁腈橡胶接枝型吸水膨胀橡胶的性能。结果表明,随着吸水树脂中PU含量的增大,吸水膨胀橡胶的物理性能提高,最大质量吸水率增大;当PU完全替代聚丙烯酸钠时,随着DCP用量的增大,吸水膨胀橡胶的综合物理性能下降,质量吸水率减小,当DCP用量为2份时,吸水膨胀橡胶的最大质量吸水率保持在2.04倍以上,重复吸水质量保持率保持在98%以上。  相似文献   

2.
将纳米蒙脱土、交联聚丙烯酸钠(CSP)与丁腈橡胶(NBR)共混,制备了吸水膨胀橡胶(WSR)。研究了纳米蒙脱土用量、浸泡温度、盐溶液质量分数及溶液p H值对CSP/NBR WSR性能的影响。结果表明,纳米蒙脱土可提高WSR的保水能力,纳米蒙脱土用量的增加会降低WSR的吸水速率。加入30份纳米蒙脱土的WSR,随浸泡温度的升高,在40℃以下时吸水率和吸水速率增加,在40℃以上时吸水速率先增加后降低。随着盐溶液质量分数的增加,WSR的吸水率和吸水速率均降低。当p H值为7时,WSR的吸水率达到最大值。  相似文献   

3.
《弹性体》2016,(2)
以聚乙二醇、甲苯二异氰酸酯、甲基丙烯酸羟乙酯为原料,用逐步聚合反应法制备出吸水性聚氨酯(PU)大分子反应型树脂,该树脂再与丁腈橡胶(NBR)通过自由基反应制备出聚乙二醇接枝丁腈橡胶主链的新型耐盐型遇水膨胀橡胶(WSR)。研究了PU用量、聚丙烯酸钠(SAP)用量对WSR力学性能和最大质量膨胀倍率(ΔWe)的影响。结果表明,随着吸水树脂中PU相对含量的升高及SAP相对含量的下降,WSR力学性能提高,ΔWe增大。在不添加小料且PU含量在150份时,制备的WSR不存在吸水剂析出现象且吸水膨胀倍率稳定在3.6倍左右,并表现出较好的耐盐性。  相似文献   

4.
以丁腈橡胶为基胶、聚丙烯酸钠为吸水树脂(SAP)、乙二胺四乙酸二钠(EDTA -2 Na)为金属离子封闭剂,与聚乙二醇和二苯基甲烷二异氰酸酯混合物共混制得耐盐型吸水膨胀橡胶(WSR),分别考察了聚氨酯(PU)生成量、EDTA -2 Na和聚丙烯酸钠用量对WSR物理机械性能及矿化度水中吸水膨胀性能的影响.结果表明,随着P...  相似文献   

5.
周琴  李杨  段攀峰  伍玉娇 《橡胶工业》2019,66(1):0022-0026
研究偶联剂(偶联剂KH570和聚硅氧烷11-100)改性硫酸钙晶须对以丁腈橡胶为主体材料的吸水膨胀橡胶(WSR)拉伸性能和吸水性能的影响。结果表明:偶联剂尤其是聚硅氧烷11-100改性硫酸钙晶须后,WSR的300%定伸应力、拉伸强度和拉断伸长率均提高,吸水速率加快,吸水膨胀率增大,质量损失率减小;吸水初期WSR的拉伸强度提高,吸水平衡后WSR的拉伸强度下降到14. 52 MPa。  相似文献   

6.
徐恩松  杨隽  范志玮  赵启天 《橡胶工业》2019,66(2):0111-0115
用磷酸刻蚀改性芳纶短纤维,以改性芳纶短纤维作为增强填料制备丁腈橡胶(NBR)吸水膨胀橡胶(炭黑和白炭黑用量均为20份),研究聚丙烯酸钠(吸水树脂)和改性芳纶短纤维用量对NBR吸水膨胀橡胶物理性能和吸水性能的影响。结果表明:聚丙烯酸钠用量对NBR吸水膨胀橡胶的拉伸强度、拉断伸长率、吸水膨胀率和质量损失率影响较大,聚丙烯酸钠的适宜用量为60份;改性芳纶短纤维用量增大,NBR吸水膨胀橡胶的硬度增大,拉伸强度提高,吸水膨胀率和质量损失率减小,改性芳纶短纤维的适宜用量为4份。  相似文献   

7.
本文采用溶液共混法将GO分散于丁腈橡胶中制备GO/NBR复合橡胶,并以GO/NBR复合橡胶为原料制备了新型高吸水膨胀橡胶。利用X射线衍射(XRD)表征GO在丁腈橡胶中的分散性;并对吸水膨胀橡胶的性能进行表征。XRD结果表明GO均匀分散于丁腈橡胶中且无团聚等现象;橡胶硫化特性表明GO加入使橡胶硫化效率降低,硫化时间变长;橡胶力学性能测试显示GO加入使橡胶拉伸性能下降,断裂伸长率上升同时硬度下降;吸水测试表明加入GO使橡胶吸水性能明显提升,最大吸水倍率增高。  相似文献   

8.
先用逐步聚合反应法以聚乙二醇(PEG)、甲苯二异氰酸酯(TDI)、甲基丙烯酸羟乙酯(HEMA)等为原料制备出吸水性聚氨酯大分子反应型树脂(PU)。该树脂与丁腈橡胶(NBR)混合,制备出PEG接枝NBR主链的新型耐盐型遇水膨胀橡胶(WSR)。论文研究了PU用量、聚丙烯酸钠(SAP)用量、过氧化二异丙苯(DCP)用量及循环浸泡次数对WSR力学性能和最大质量膨胀倍率(ΔWe)的影响。研究结果表明,随着吸水树脂中PU树脂相对含量的升高,WSR力学性能提高,ΔWe增大。当PU完全代替SAP时,DCP含量越高其力学性能及ΔWe越低,当DCP含量为2份时ΔWe保持在2.04倍以上,WSR的重复吸水膨胀倍率保持在98%以上。  相似文献   

9.
对天然橡胶(NR)/丁苯橡胶(SBR)胶料应用正交试验法和丁腈橡胶(NBR)胶料用回归分析法对制备吸水膨胀橡胶的吸水膨胀性和物理机械性能进行研究。结果表明:吸水膨胀橡胶的吸水膨胀率随吸水树脂用量增加而增大,拉伸强度和扯断伸长率随吸水树脂用量增加而降低;硫化剂用量越多橡胶吸水膨胀率越小:补强剂采用白炭黑日寸有利于提高胶料的吸水膨胀率,而采用炭黑补强日寸则物性有所提高,但吸水膨胀率却明显下降。  相似文献   

10.
以丁腈橡胶为基体,加入丙烯酸锂(LiAA)和过氧化二异丙苯(DCP)通过原位聚合制得吸水膨胀橡胶,研究了其力学性能和吸水性能。结果表明:LiAA在DCP引发作用下在NBR橡胶中发生原位聚合。随着三烯丙基异三聚氰酸酯(TAIC)用量的增加,WSR的拉伸强度和吸水膨胀倍率先增加后降低。在盐溶液中WSR的吸水能力有明显的降低,其中二价钙离子影响最为明显。WSR的吸水能力随着溶液pH的增加,先上升后降低,在pH为8时,吸水平衡倍率最大。加入白炭黑能够显著提高WSR的力学性能,而加入PEG则提高WSR的吸水速率。  相似文献   

11.
端羧基丁腈橡胶(CTBN)经改性后得到f-CTBN(含端双羟基);然后以f-CTBN和PEG(聚乙二醇)为主要原料,采用逐步聚合法合成了高支化嵌段PU(聚氨酯);最后分别以H12MDI(4,4′-二环己基甲烷二异氰酸酯)或HDI(l,6-己二异氰酸酯)为固化剂,制备相应的浇铸体。研究结果表明:f-CTBN/PEG-1000/HDI基PU材料表面存在许多呼吸型微孔,其强度和模量较高、韧性良好,在生物医学领域,尤其是医用薄膜产品方面具有极大的应用潜力。  相似文献   

12.
Lateral flexible linking of shape memory polyurethane (SMPU) by a polyethyleneglycol (PEG) linker through the allophanate linking method was studied, while adjusting the soft segment content and PEG length. The SMPU was composed of 4,4′‐methylenebis(phenylisocyanate) (MDI), poly(tetramethyleneglycol) (PTMG), 1,4‐butanediol (BD), and PEG‐200 as a linker. A second MDI was used to connect the carbamate group of the SMPU chain and PEG. The impact of soft segment content and PEG length on the mechanical properties and shape recovery of two series of SMPU were compared. In the best case, a 545% increase in maximum stress compared to a linear polymer was attained. The flexibly crosslinked SMPUs behave similarly to natural rubber in their stress–strain curve, but their tensile mechanical properties surpassed those of natural rubber. Shape recovery went up to 96%, which is among the best SMPUs tested so far, and shape recovery remained above 90% after four cyclic tests. The extraordinary shape memory results are analyzed and discussed together with DSC and IR data. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
《国际聚合物材料杂志》2012,61(11):1041-1050
Mechanical properties and morphology of blends of polystyrene and finely powdered (uncrosslinked and crosslinked) nitrile rubber were studied with special reference to the effect of blend ratio. Blends were prepared by melt mixing polystyrene and nitrile rubber in an internal mixer at 180°C in the composition range of 0–20 wt% nitrile rubber. The tensile stress/strain properties and impact strength of the polystyrene/nitrile rubber blends were determined using injection molded test specimens. In comparison to the blends with uncrosslinked nitrile rubber, blends with crosslinked nitrile rubber showed higher tensile strength, elongation at break, Young's modulus, impact strength, flexural strength, and flexural modulus. The enhanced adhesion between the dispersed nitrile rubber phase and the polystyrene matrix results in an increase in mechanical properties. Scanning electron micrographs of the fractured surfaces confirm the enhancement in mechanical properties.  相似文献   

14.
丁腈橡胶作为硝酸异丙酯的密封材料,常常会发生硝酸异丙酯的渗漏挥发现象。为选择新的橡胶代替丁腈橡胶密封硝酸异丙酯,本文制备了丁腈橡胶与三元乙丙橡胶试样,测试经溶胀后丁腈橡胶与三元乙丙橡胶的质量与体积变化率、组织结构、表面形貌、力学性能,并对比了丁腈橡胶与三元乙丙橡胶溶胀后的性能。结果表明:丁腈橡胶与三元乙丙橡胶在硝酸异丙酯中溶胀后各方面性能均有所下降,但是三元乙丙橡胶溶胀后的性能要强于丁腈橡胶,显示出更好的耐硝酸异丙酯性能,建议使用三元乙丙橡胶并喷涂酚醛树脂液体密封胶密封硝酸异丙酯。  相似文献   

15.
聚氯乙烯/丁腈胶粉共混型热塑性弹性体   总被引:8,自引:0,他引:8  
将聚氯乙烯与废丁腈胶粉经高温机械共混,制备了动态交联的共混型热塑性弹性体。讨论了共混比,硫化体系及其用量,废胶粉品种(丁腈胶粉,轮胎胶粉)等因素对热塑性弹性体性能的影响,同时将聚氯乙烯/丁腈胶粉与聚氯乙烯/轮胎胶粉制备的共混型热塑性弹性体的性能进行了比较。结果表明,以聚氯乙烯100份(质量份,下同),邻苯二甲酸二辛酯50份,丁腈胶粉80份,丁腈橡胶20份,过氧化二异丙苯0.5份,氧化锌5份及适量其他助剂可制得综合性能较好的共混型热塑性弹性体。扫描电镜结果显示该共混型热塑性弹性体具有较好的相容性。  相似文献   

16.
表面改性对丁腈橡胶耐油及耐磨性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
韩珩  王世杰  吕晓仁 《橡胶工业》2015,62(10):587-591
采用卤化(氟化、溴化、碘化)及混合氧化方法对丁腈橡胶表面进行化学改性,研究其对丁腈橡胶耐原油性能和摩擦磨损性能的影响,并借助SEM、摩擦磨损试验机等设备分析比较这几种方法的改性效果及其摩擦磨损机理。结果表明:氟化、溴化、碘化和混合氧化改性均能提高丁腈橡胶表面的拉伸强度、拉断伸长率、硬度等物理性能,其中氟化和混合氧化改性的效果尤其明显,碘化次之,溴化效果稍差;对丁腈橡胶表面进行卤化(氟化、溴化、碘化)改性并没有明显提高材料的耐油性能,而采用混合氧化方法改性的丁腈橡胶的耐油性能明显提高;改性后试样的耐磨性能均得到提高,其中混合氧化改性的效果最好,氟化次之,然后依次碘化、溴化。  相似文献   

17.
将粘合剂和润滑剂配合,制备出力学性能良好、润滑性能突出、耐水性能优异的丁腈橡胶密封件减磨材料。摩擦因数试验和油封台架试验表明:在丁腈橡胶动密封件工作面上包覆减磨层能有效降低摩擦力,起到减磨作用,有效降低密封面的温升,延缓密封件热老化速度,显著提高密封件使用寿命。  相似文献   

18.
采用熔融共混挤出的方法,制备了废旧丁腈橡胶粉不同掺量的丙烯腈-丁二烯-苯乙烯共聚物(ABS)复合材料,研究了废旧丁腈橡胶粉对复合材料力学性能、流动性能和热稳定性的影响。结果表明:废旧丁腈橡胶粉降低了ABS的拉伸强度和弯曲强度,提高了冲击强度,其适宜的掺量宜控制在5%以内;而且,WNBR的加入使复合材料的热稳定性得到提高,但降低了复合材料的流动性。  相似文献   

19.
Summary The mechanical and microwave radiation absorbing properties of conductive ternary blends based on nitrile rubber, EPDM rubber and polyaniline, doped with dodecylbenzene sulfonic acid, have been investigated with special interest in the concentrations of nitrile rubber and conductive polymer in the blend. The ternary blends were prepared by melt blending using an internal mixer. Mechanical properties and soluble fraction analyses show that crosslinking occurs during blending, and that the crosslinking degree depends on the concentrations of doped polyaniline and nitrile rubber in the blend. The crosslinking reaction involves the doping acid (dodecylbenzene sulfonic acid) of polyaniline and the -C≡N group in the nitrile rubber. The ternary blends can be used for microwave absorption in the frequency range of 8–12 GHz. This property depends on the concentration of the conductive polymer and film thickness.  相似文献   

20.
In this work, cetyl trimethyl ammonium bromide (CTAB), silane coupling agent (KH570) and polyethylene glycol (PEG) were used to modify the surface property of molybdenum disulphide (MoS2). MoS2/nitrile rubber (NBR) composites were directly prepared by mechanical blending. Meanwhile, the effects of loading content of MoS2, the kinds of modifiers on the mechanical and tribological properties of the composites were evaluated. The dispersion of fillers in rubber matrix and the worn surface of the composites were analysed by SEM. Results showed that the properties of MoS2/NBR composites prepared by CTAB modified MoS2 were superior to that of KH570 or PEG modified MoS2 and unmodified MoS2 because of strong opposite charges attraction between cetyl trimethyl ammonium cation and MoS2 surface. When adding 10?phr CTAB modified MoS2 in rubber matrix, the dispersion of filler was optimum, and the coefficient of friction of composite was the lowest in the prepared composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号