首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the heart, connexins form gap junctions, hemichannels, and are also present within mitochondria, with connexin 43 (Cx43) being the most prominent connexin in the ventricles. Whereas the role of Cx43 is well established for the healthy and diseased left ventricle, less is known about the importance of Cx43 for the development of right ventricular (RV) dysfunction. The present article focusses on the importance of Cx43 for the developing heart. Furthermore, we discuss the expression and localization of Cx43 in the diseased RV, i.e., in the tetralogy of Fallot and in pulmonary hypertension, in which the RV is affected, and RV hypertrophy and failure occur. We will also introduce other Cx molecules that are expressed in RV and surrounding tissues and have been reported to be involved in RV pathophysiology. Finally, we highlight therapeutic strategies aiming to improve RV function in pulmonary hypertension that are associated with alterations of Cx43 expression and function.  相似文献   

2.
Amino acids show apparent propensities toward their neighbors. In addition to preferences of amino acids for their neighborhood context, amino acid substitutions are also considered to be context-dependent. However, context-dependence patterns of amino acid substitutions still remain poorly understood. Using relative entropy, we investigated the neighbor preferences of 20 amino acids and the context-dependent effects of amino acid substitutions with protein sequences in human, mouse, and dog. For 20 amino acids, the highest relative entropy was mostly observed at the nearest adjacent site of either N- or C-terminus except C and G. C showed the highest relative entropy at the third flanking site and periodic pattern was detected at G flanking sites. Furthermore, neighbor preference patterns of amino acids varied greatly in different secondary structures. We then comprehensively investigated the context-dependent effects of amino acid substitutions. Our results showed that nearly half of 380 substitution types were evidently context dependent, and the context-dependent patterns relied on protein secondary structures. Among 20 amino acids, P elicited the greatest effect on amino acid substitutions. The underlying mechanisms of context-dependent effects of amino acid substitutions were possibly mutation bias at a DNA level and natural selection. Our findings may improve secondary structure prediction algorithms and protein design; moreover, this study provided useful information to develop empirical models of protein evolution that consider dependence between residues.  相似文献   

3.
Disabled-1 (Dab1) protein is an intracellular adaptor of reelin signaling required for prenatal neuronal migration, as well as postnatal neurotransmission, memory formation and synaptic plasticity. Yotari, an autosomal recessive mutant of the mouse Dab1 gene is recognizable by its premature death, unstable gait and tremor. Previous findings are mostly based on neuronal abnormalities caused by Dab1 deficiency, but the role of the reelin signaling pathway in nonneuronal tissues and organs has not been studied until recently. Hepatocytes, the most abundant cells in the liver, communicate via gap junctions (GJ) are composed of connexins. Cell communication disruption in yotari mice was examined by analyzing the expression of connexins (Cxs): Cx26, Cx32, Cx37, Cx40, Cx43 and Cx45 during liver development at 13.5 and 15.5 gestation days (E13.5 and E15.5). Analyses were performed using immunohistochemistry and fluorescent microscopy, followed by quantification of area percentage covered by positive signal. Data are expressed as a mean ± SD and analyzed by one-way ANOVA. All Cxs examined displayed a significant decrease in yotari compared to wild type (wt) individuals at E13.5. Looking at E15.5 we have similar results with exception of Cx37 showing negligible expression in wt. Channels formation triggered by pathological stimuli, as well as propensity to apoptosis, was studied by measuring the expression of Pannexin1 (Panx1) and Apoptosis-inducing factor (AIF) through developmental stages mentioned above. An increase in Panx1 expression of E15.5 yotari mice, as well as a strong jump of AIF in both phases suggesting that yotari mice are more prone to apoptosis. Our results emphasize the importance of gap junction intercellular communication (GJIC) during liver development and their possible involvement in liver pathology and diagnostics where they can serve as potential biomarkers and drug targets.  相似文献   

4.
Connexins can assemble into either gap junctions (between two cells) or hemichannels (from one cell to the extracellular space) and mediate cell-to-cell signalling. A subset of connexins (Cx26, Cx30, Cx32) are directly sensitive to CO2 and fluctuations in the level within a physiological range affect their open probability, and thus, change cell conductance. These connexins are primarily found on astrocytes or oligodendrocytes, where increased CO2 leads to ATP release, which acts on P2X and P2Y receptors of neighbouring neurons and changes excitability. CO2-sensitive hemichannels are also found on developing cortical neurons, where they play a role in producing spontaneous neuronal activity. It is plausible that the transient opening of hemichannels allows cation influx, leading to depolarisation. Recently, we have shown that dopaminergic neurons in the substantia nigra and GABAergic neurons in the VTA also express Cx26 hemichannels. An increase in the level of CO2 results in hemichannel opening, increasing whole-cell conductance, and decreasing neuronal excitability. We found that the expression of Cx26 in the dopaminergic neurons in the substantia nigra at P7-10 is transferred to glial cells by P17-21, displaying a shift from being inhibitory (to neuronal activity) in young mice, to potentially excitatory (via ATP release). Thus, Cx26 hemichannels could have three modes of signalling (release of ATP, excitatory flickering open and shut and inhibitory shunting) depending on where they are expressed (neurons or glia) and the stage of development.  相似文献   

5.
Connexins (Cx) are members of a protein family that forms intercellular channels localised in gap junction (GJ) plaques and single transmembrane channels called hemichannels. They participate in intercellular communication or communication between the intracellular and extracellular environments. Connexins affect cell homeostasis, growth and differentiation by enabling the exchange of metabolites or by interfering with various signalling pathways. Alterations in the functionality and the expression of connexins have been linked to the occurrence of many diseases. Connexins have been already linked to cancers, cardiac and brain disorders, chronic lung and kidney conditions and wound healing processes. Connexins have been shown either to suppress cancer tumour growth or to increase tumorigenicity by promoting cancer cell growth, migration and invasiveness. A better understanding of the complexity of cancer biology related to connexins and intercellular communication could result in the design of novel therapeutic strategies. The modulation of connexin expression may be an effective therapeutic approach in some types of cancers. Therefore, one important challenge is the search for mechanisms and new drugs, selectively modulating the expression of various connexin isoforms. We performed a systematic literature search up to February 2020 in the electronic databases PubMed and EMBASE. Our search terms were as follows: connexins, hemichannels, cancer and cancer treatment. This review aims to provide information about the role of connexins and gap junctions in cancer, as well as to discuss possible therapeutic options that are currently being studied.  相似文献   

6.
目的原核表达并纯化牛种布鲁菌(Brucella)VirB12蛋白。方法利用PCR法从牛种布鲁菌基因组中扩增VirB12基因,插入pET-30a(+)载体,构建重组表达质粒pETV12,转化大肠埃希菌BL21(DE3),IPTG诱导表达。表达的重组蛋白经组氨酸结合树脂柱纯化后,进行SDS-PAGE及Western blot分析。结果重组表达质粒pETV12经双酶切及测序证明构建正确;表达的重组蛋白相对分子质量约22 000,纯化的重组蛋白纯度达94%,可被布鲁菌免疫兔血清特异性识别。结论原核表达并纯化了牛种布鲁菌VirB12蛋白,为进一步研究VirB12蛋白的结构、功能及相关疫苗的研制奠定了基础。  相似文献   

7.
Neural progenitor cells (NPCs) are self-renewing cells that give rise to the major cells in the nervous system and are considered to be the possible cell of origin of glioblastoma. The gap junction protein connexin43 (Cx43) is expressed by NPCs, exerting channel-dependent and -independent roles. We focused on one property of Cx43—its ability to inhibit Src, a key protein in brain development and oncogenesis. Because Src inhibition is carried out by the sequence 266–283 of the intracellular C terminus in Cx43, we used a cell-penetrating peptide containing this sequence, TAT-Cx43266–283, to explore its effects on postnatal subventricular zone NPCs. Our results show that TAT-Cx43266–283 inhibited Src activity and reduced NPC proliferation and survival promoted by epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2). In differentiation conditions, TAT-Cx43266–283 increased astrocyte differentiation at the expense of neuronal differentiation, which coincided with a reduction in Src activity and β-catenin expression. We propose that Cx43, through the region 266–283, reduces Src activity, leading to disruption of EGF and FGF-2 signaling and to down-regulation of β-catenin with effects on proliferation and differentiation. Our data indicate that the inhibition of Src might contribute to the complex role of Cx43 in NPCs and open new opportunities for further research in gliomagenesis.  相似文献   

8.
目的克隆单核细胞增生症李斯特菌细胞溶解素O(LLO)基因hlyA,构建其原核表达系统,鉴定融合蛋白LLO的抗原性和溶血活性。方法采用PCR技术从Lm总DNA中扩增hlyA基因,与基因库中其它9株hlyA基因序列相比较。用pET30a载体构建LLO原核表达质粒pET30ahlyA,在E.coliBL21(DE3)宿主菌中用IPTG诱导表达,Ni2+柱纯化后,Westernblot鉴定其抗原性。用人红细胞检测溶血活性。结果所克隆的hlyA基因PEST样结构与GenBank上9个菌株的相应氨基酸序列相比,最多有3个氨基酸替代。LLO融合蛋白在大肠杆菌中可高效表达,纯化后获得高纯度的重组蛋白,具有较高的抗原性。在酸性pH5.5条件下,LLO溶血活性最大为1.41×104HU/mg。结论已成功构建LLO原核表达系统,所表达的蛋白具有较高的抗原性和溶血活性。  相似文献   

9.
Recent research on the flavoenzyme D-amino acid oxidase from Rhodotorula gracilis (RgDAAO) has revealed new, intriguing properties of this catalyst and offers novel biotechnological applications. Among them, the reaction of RgDAAO has been exploited in the analytical determination of the D-amino acid content in biological samples. However, because the enzyme does not oxidize acidic D-amino acids, it cannot be used to detect the total amount of D-amino acids. We now present the results obtained using a random mutagenesis approach to produce RgDAAO mutants with a broader substrate specificity. The libraries of RgDAAO mutants were generated by error-prone PCR, expressed in BL21(DE3)pLysS Escherichia coli cells and screened for their ability to oxidize different substrates by means of an activity assay. Five random mutants that have a 'modified' substrate specificity, more useful for the analytical determination of the entire content of D-amino acids than wild-type RgDAAO, have been isolated. With the only exception of Y223 and G199, none of the effective amino acid substitutions lie in segments predicted to interact directly with the bound substrate. The substitutions appear to cluster on the protein surface: it would not have been possible to predict that these substitutions would enhance DAAO activity. We can only conclude that these substitutions synergistically generate small structural changes that affect the dynamics and/or stability of the protein in a way that enhances substrate binding or subsequently catalytic turnover.  相似文献   

10.
Cardiac connexins (Cxs) are proteins responsible for proper heart function. They form gap junctions that mediate electrical and chemical signalling throughout the cardiac system, and thus enable a synchronized contraction. Connexins can also individually participate in many signal transduction pathways, interacting with intracellular proteins at various cellular compartments. Altered connexin expression and localization have been described in diseased myocardium and the aim of this study is to assess the involvement of Cx43, Cx26, and some related molecules in ponatinib-induced cardiac toxicity. Ponatinib is a new multi-tyrosine kinase inhibitor that has been successfully used against human malignancies, but its cardiotoxicity remains worrisome. Therefore, understanding its signaling mechanism is important to adopt potential anti cardiac damage strategies. Our experiments were performed on hearts from male and female mice treated with ponatinib and with ponatinib plus siRNA-Notch1 by using immunofluorescence, Western blotting, and proteomic analyses. The altered cardiac function and the change in Cxs expression observed in mice after ponatinib treatment, were results dependent on the Notch1 pathway and sex. Females showed a lower susceptibility to ponatinib than males. The downmodulation of cardiac Cx43, Cx26 and miR-122, high pS368-Cx43 phosphorylation, cell viability and survival activation could represent some of the female adaptative/compensatory reactions to ponatinib cardiotoxicity.  相似文献   

11.
目的原核表达并纯化日本血吸虫亮氨酸氨基肽酶(Leucine aminopeptidase of Schistosoma japonicum,SjLAP)。方法从日本血吸虫成虫中RT-PCR扩增LAP基因,克隆至原核表达载体pET-28a中,转化感受态E.coli BL21(DE3),IPTG诱导表达,表达的重组SjLAP蛋白(rSjLAP)经SDS-PAGE和Western blot分析后,经His Binding Purification Kit层析纯化,纯化的rSjLAP蛋白经SDS-PAGE分析纯度,Bradford法测定浓度。结果克隆的SjLAP基因与GenBank中登录的基因序列比较有2个碱基发生置换,导致对应的2个氨基酸发生置换,但均不在关键区域;重组表达质粒pET-28a/SjLAP经双酶切鉴定证实构建正确;表达的rSjLAP蛋白相对分子质量约45 000,诱导4 h表达量最高;纯化的rSjLAP蛋白纯度较高,浓度达5.0 mg/ml,并可被抗小鼠His-tag单抗及血吸虫感染的患者血清和兔血清特异性识别,具有良好的反应原性。结论成功在大肠杆菌中表达了rSjLAP蛋白,纯化的rSjLAP纯度较高,为血吸虫病的诊断和预防等研究奠定了基础。  相似文献   

12.
Chemokines are chemotactic cytokines that promote cancer growth, metastasis, and regulate resistance to chemotherapy. Stromal cell-derived factor 1 (SDF1) also known as C-X-C motif chemokine 12 (CXCL12), a prognostic factor, is an extracellular homeostatic chemokine that is the natural ligand for chemokine receptors C-X-C chemokine receptor type 4 (CXCR4), also known as fusin or cluster of differentiation 184 (CD184) and chemokine receptor type 7 (CXCR7). CXCR4 is the most widely expressed rhodopsin-like G protein coupled chemokine receptor (GPCR). The CXCL12–CXCR4 axis is involved in tumor growth, invasion, angiogenesis, and metastasis in colorectal cancer (CRC). CXCR7, recently termed as atypical chemokine receptor 3 (ACKR3), is amongst the G protein coupled cell surface receptor family that is also commonly expressed in a large variety of cancer cells. CXCR7, like CXCR4, regulates immunity, angiogenesis, stem cell trafficking, cell growth and organ-specific metastases. CXCR4 and CXCR7 are expressed individually or together, depending on the tumor type. When expressed together, CXCR4 and CXCR7 can form homo- or hetero-dimers. Homo- and hetero-dimerization of CXCL12 and its receptors CXCR4 and CXCR7 alter their signaling activity. Only few drugs have been approved for clinical use targeting CXCL12-CXCR4/CXCR7 axis. Several CXCR4 inhibitors are in clinical trials for solid tumor treatment with limited success whereas CXCR7-specific inhibitors are still in preclinical studies for CRC. This review focuses on current knowledge of chemokine CXCL12 and its receptors CXCR4 and CXCR7, with emphasis on targeting the CXCL12–CXCR4/CXCR7 axis as a treatment strategy for CRC.  相似文献   

13.
Hyaluronic acid (HA), with diverse cosmetic and medical applications, is the natural glycosaminoglycan product of HA synthases. Although process and/or metabolic engineering are used for industrial HA production, the potential of protein engineering has barely been realised. Herein, knowledge‐gaining directed evolution (KnowVolution) was employed to generate an HA synthase variant from Pasteurella multocida (pmHAS) with improved chain‐length specificity and a twofold increase in mass‐based turnover number. Seven improved pmHAS variants out of 1392 generated by error‐prone PCR were identified; eight prospective positions were saturated and the most beneficial amino acid substitutions were recombined. After one round of KnowVolution, the longest HA polymer (<4.7 MDa), through an engineered pmHAS variant in a cell‐free system, was synthesised. Computational studies showed that substitutions from the best variant (T40L, V59M and T104A) are distant from the glycosyltransferase sites and increase the flexibility of the N‐terminal region of pmHAS. Taken together, these findings suggest that the N terminus may be involved in HA synthesis and demonstrate the potential of protein engineering towards improved HA synthase activity.  相似文献   

14.
Structure‐guided protein engineering achieved a variant of the unique racemase AMDase G74C, with 40‐fold increased activity in the racemisation of several arylaliphatic carboxylic acids. Substrate binding during catalysis was investigated by saturation‐transfer‐difference NMR (STD‐NMR) spectroscopy. All atoms of the substrate showed interactions with the enzyme. STD‐NMR measurements revealed distinct nuclear Overhauser effects in experiments with and without molecular conversion. The spectroscopic analysis led to the identification of several amino acid residues whose substitutions increased the activity of G74C. Single amino acid exchanges increased the activity moderately; structure‐guided saturation mutagenesis yielded a quadruple mutant with a 40 times higher reaction rate. This study presents STD‐NMR as versatile tool for the analysis of enzyme–substrate interactions in catalytically competent systems and for the guidance of protein engineering.  相似文献   

15.
We tested a disulfide-rich antifreeze protein as a potential scaffold for design or selection of proteins with the capability of binding periodically organized surfaces. The natural antifreeze protein is a beta-helix with a strikingly regular two-dimensional grid of threonine side chains on its ice-binding face. Amino acid substitutions were made on this face to replace blocks of native threonines with other amino acids spanning the range of beta-sheet propensities. The variants, displaying arrays of distinct functional groups, were studied by mass spectrometry, reversed-phase high performance liquid chromatography, thiol reactivity and circular dichroism and NMR spectroscopies to assess their structures and stabilities relative to wild type. The mutants are well expressed in bacteria, despite the potential for mis-folding inherent in these 84-residue proteins with 16 cysteines. We demonstrate that most of the mutants essentially retain the native fold. This disulfide bonded beta-helical scaffold, thermally stable and remarkably tolerant of amino acid substitutions, is therefore useful for design and engineering of macromolecules with the potential to bind various targeted ordered material surfaces.  相似文献   

16.
A huge quantity of gene and protein sequences have become available during the post-genomic era, and information about genetic variations, including amino acid substitutions and SNPs, is accumulating rapidly. To understand the effects of these changes, it is often essential to apply bioinformatics tools. Where there is a lack of homologous sequences or a three-dimensional structure, it becomes essential to predict the effects of mutations based solely on protein sequence information. Several computational methods utilizing machine learning techniques have been developed. These predictions generally use the 20-alphabet amino acid code to train the model. With limited available data, the 20-alphabet amino acid features may introduce so many parameters that the model becomes over-fitted. To decrease the number of parameters, we propose a physicochemical feature-based method to forecast the effects of amino acid substitutions on protein stability. Protein structure alterations caused by mutations can be classified as stabilizing or destabilizing. Based on experimental folding-unfolding free energy (DeltaDeltaG) values, we trained a support vector machine with a cleaned data set. The physicochemical properties of the mutated residues, the number of neighboring residues in the primary sequence and the temperature and pH were used as input attributes. Different kernel functions, attributes and window sizes were optimized. An average accuracy of 80% was obtained in cross-validation experiments.  相似文献   

17.
cDNAs of various lengths encoding the second domain of the multifunctional fatty acid synthase (FAS) have been expressed in Escherichia coli and the recombinant proteins refolded in vitro to catalytically active monomeric malonyl-/acetyltransacylases. FAS residues 428-487, previously thought to represent the amino terminus of the malonyl-/acetyltransacylase, can be omitted from the recombinant enzyme with no loss in catalytic activity. This shortened transacylase, consisting of FAS residues 488-809, can be repeatedly denatured and renatured in vitro with reproducibly high recovery and no loss in specific activity. When expressed as a soluble enzyme in Spodoptera frugiperda cells, this transacylase has the same specific activity as the enzyme that has been refolded in vitro. The refolded transacylase consisting of FAS residues 488-809, but not the longer enzyme consisting of residues 428-815, can be crystallized readily. These results suggest that FAS residues 428-487, previously thought to represent the amino terminus of the malonyl-/acetyltransacylase, are not required for catalysis of the transacylase reaction. This region of the FAS is less well conserved than the transacylase catalytic domain and may constitute an extended structural linker that facilitates the functional interaction between the transacylase and acyl carrier protein domains.   相似文献   

18.
19.
GM-CSF(12-127)突变体生物学活性的研究   总被引:1,自引:0,他引:1  
GM-CSF的结构与功能研究表明,N-端的1~13位氨基酸并非生物学活性所必需,且干扰与受体的结合。作者采用PCR突变的方法删除1~11位的氨基酸,保留12位的脯氨酸。突变后的基因经全序列测定证实,之后插入原核高效表达载体pBV220中表达,基因突变后的表达量及表达产物的稳定性均有所提高。大批量表达后经提取包涵体、疏水层析、离子交换层析,最终获得了纯的GM-CSF(12-127)突变体蛋白,其生物学活性比未突变蛋白有明显提高,达3×107U/mg蛋白。受体竞争结合实验显示突变体蛋白受体亲和活性增强。  相似文献   

20.
In addition to hydrolysis of glycerophospholipids, phospholipases D (PLDs) catalyze the head group exchange. The molecular basis of this transphosphatidylation potential, which strongly varies for PLDs from different sources, is unknown hitherto. Recently, the genes of two PLD isoenzymes from white cabbage have been sequenced and expressed in Escherchia coli, yielding the basis for mutational studies. In the present paper, three sequence characteristics of the isoenzyme (PLD2) that corresponds to the often used enzyme isolated from cabbage leaves have been probed for their importance in hydrolysis as well as transphosphatidylation activities: (i) the two HKD motifs, (ii) the C terminus and (iii) the eight cysteine residues. All these regions or amino acids are highly conserved in alpha-type plant PLDs. Based on multiple alignments, predictions of secondary structure and comparisons of hydrophobicity profiles, 35 enzyme variants were created and assayed. All positions tested proved to be very sensitive towards amino acid exchanges with respect to hydrolytic activity in the absence of glycerol as well as to the ratio of hydrolytic and transphosphatidylation activities in the presence of glycerol. A significant increase of total activity and transphosphatidylation activity could be obtained by the substitutions C310S and C625S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号