首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
化学气相渗透法制备三维针刺C/SiC复合材料的烧蚀性能   总被引:1,自引:0,他引:1  
用化学气相渗透法制备了三维针刺碳纤维增强碳化硅陶瓷基复合材料,复合材料的平均密度为2.15 g/cm3,气孔率为16.0%.用氧乙炔焰研究了复合材料的烧蚀性能,用扫描电镜分析了烧蚀表面的形貌,用表面能谱分析了烧蚀产物的成分.复合材料的线烧蚀率和质量烧蚀率分别为0.03mm/s和0.004 7 g/s.在烧蚀中心区,烧蚀最严重,表层只有C纤维骨架,且C纤维呈针状,复合材料的烧蚀以升华和冲刷为主.在烧蚀过渡区,垂直于烧蚀面的C纤维表现出端部锐化、根部细化的特性,平行于烧蚀面的C纤维呈针状,复合材料的烧蚀以氧化和机械剥蚀为主.烧蚀边缘烧蚀不明显,烧蚀产物和SiC基体熔融后覆盖在烧蚀表面,阻碍了复合材料的进一步烧蚀,复合材料的烧蚀以氧化为主.  相似文献   

2.
SiC改性C/C复合材料的制备及其烧蚀性能   总被引:4,自引:0,他引:4  
采用超声波震荡法将SiC微粉添加到二维针刺碳毡预制体中,利用热梯度化学气相浸渗工艺沉积热解碳制备了SiC改性碳纤维增强碳基(carbon fiber reinforced catbon,C/C)复合材料.借助x射线衍射与扫描电子显微镜检测和观察材料的微观结构,利用氧-乙炔烧蚀实验测试材料的抗烧蚀性能.结果表明:SiC微...  相似文献   

3.
针对化学气相渗透法制备的C/SiC复合材料燃烧室,采用发动机燃烧风洞,研究了其在超高温燃气环境下的氧化烧蚀行为,分析了C/SiC复合材料燃烧室内各个区域的烧蚀形貌特征。结果表明:SiC在不同区域表现出不同的烧蚀行为,包括主被动氧化、层流冲刷、湍流冲刷等,这些烧蚀及其耦合作用使得SiC基体被侵蚀以及碳纤维被氧化,最终导致C/SiC复合材料在燃烧时失效。C/SiC复合材料是一种重要的超高温热防护材料,了解在服役环境下这种材料的失效机理是其应用和优化的基础。  相似文献   

4.
采用化学气相渗透(CVI-C)和液相浸渍裂解(PIP-SiC、PIP-ZrC)工艺制备了2.5D C/C-SiC-ZrC陶瓷基复合材料。通过液氧煤油超音速火焰对蘑菇头驻点试验件进行烧蚀试验,并采用扫描电子显微镜(SEM)和能谱分析仪(EDS)对材料的微观形貌及抗氧化烧蚀机理进行了初步探讨。结果表明,C/C-ZrC-SiC复合材料基体中SiC:ZrC质量比约为4:6,在2200K~2400K液氧煤油超音速火焰烧蚀试验环境下具有良好的抗烧蚀性能,100s蘑菇头驻点线烧蚀率仅为0.0054mm/s。研究发现,C/C-ZrC-SiC复合材料中合适的SiC和ZrC基体配比,高温氧化烧蚀过程中,材料表面形成了以ZrO_(2)颗粒为骨架的连续致密粘稠熔融层,有效封填材料表面的裂纹、孔洞,降低氧化性气氛向材料内部扩散的速率,对材料形成了较好的保护。  相似文献   

5.
先驱体浸渗裂解法制备C/C-SiC复合材料的烧蚀性能   总被引:1,自引:1,他引:0  
用先驱体浸渗裂解法制备了碳纤维增强碳(carbon fiber reinforced carbon,C/C)-SiC复合材料,用H2-D2火焰法检测其烧蚀性能.结果表明:C/C-SiC复合材料的烧蚀率随复合材料中的Si含量的增加而呈下降趋势;经过5次浸渍,C/C-SiC复合材料的密度从1.46 g/cm3增加到1.75 g/cm3,Si含量从5.06%增加到13.8%,线烧蚀率和质量烧蚀率分别下降474%和34.5%.密度为1.75g/cm3的C/C-SiC复合材料,其线烧蚀率和质量烧蚀率分别为2.22 μm/s和1.289 mg/s,其线烧蚀率和质量烧蚀率分别为密度1.78 g/cm3的C/C复合材料的21.7%和78.6%.基体中SiC的引入明显提高了C/C复合材料的抗氧化烧蚀性能.  相似文献   

6.
为解决某总体单位提出的某战术导弹火箭发动机喷管扩散段结构及热环境工况要求,进行了扩散段用烧蚀材料试验对比筛选。对短切碳纤维增强酚醛树脂复合材料预浸料和高硅氧玻璃纤维增强酚醛树脂复合材料预浸料进行研究,分析不同材料的拉伸强度、压缩强度、弯曲强度和线烧蚀率,制备产品样件进行水压爆破试验,分析不同纤维长度以及不同纤维种类对产品抗压强度的影响,并通过发动机地面静试研究扩散段烧蚀材料适用情况。结果表明,虽然酚醛树脂/短切碳纤维复合材料的力学性能及耐烧蚀性能均优于酚醛树脂/长丝高硅氧玻璃纤维复合材料,但在发动机温度低于2 000℃、固体粒子含量较多且燃气流速度较大的部位,酚醛树脂/短切碳纤维复合材料的耐冲刷性能较差,无法满足使用要求,酚醛树脂/长丝高硅氧玻璃纤维复合材料耐烧蚀及抗冲刷性能更优异,可满足使用要求。进一步探讨了在特定热、力环境下不同纤维增强体烧蚀材料的热防护机理机制,通过发动机试验进行了选材方案验证,为特定热环境烧蚀材料选用提供了理论及应用依据。  相似文献   

7.
采用包埋技术在碳纤维增强碳(carbon fiber reinforced carbon,C/C)复合材料表面制备了碳化硅-硅化铪-硅化钽(SiC-HfSi2-TaSi2)抗烧蚀复合涂层.采用氧已炔火焰烧蚀试验评价了. C/C复合材料样品的抗烧蚀性能.通过X射线衍射分析、扫描电镜观察及能谱分析研究了SiC-HfSi-TaSi2作为 C/C复合材料抗烧蚀涂层的表面和断面相组成、元素分布及形貌.结果表明:由于烧蚀过程中生成的Hf02,Ta205具有高温稳定性,使得该涂层表现 出良好的抗烧蚀性能,在3 000℃下烧蚀20s后,线烧蚀率为0.009 mm/s,质量烧蚀率为0.003 85 g/s.  相似文献   

8.
针对化学气相渗透法制备的C/SiC复合材料燃烧室,采用发动机燃烧风洞,研究了其在超高温燃气环境下的氧化烧蚀行为,分析了C/SiC复合材料燃烧室内各个区域的烧蚀形貌特征。结果表明:SiC在不同区域表现出不同的烧蚀行为,包括主被动氧化、层流冲刷、湍流冲刷等,这些烧蚀及其耦合作用使得SiC基体被侵蚀以及碳纤维被氧化,最终导致C/SiC复合材料在燃烧时失效。C/SiC复合材料是一种重要的超高温热防护材料,了解在服役环境下这种材料的失效机理是其应用和优化的基础。  相似文献   

9.
碳纤维增强Si-C-N陶瓷基复合材料的氧化行为   总被引:3,自引:0,他引:3  
采用化学气相浸渗(chemical vapor infiltration,CVI)法制备了以热解碳为界面的碳纤维增强碳氮化硅陶瓷基(carbon fiber reinforced siliconcarbonitride ceramic,C/Si-C-N)复合材料.用热重法研究了无涂层C/Si-C-N在空气环境中的氧化行为.研究表明:由950℃ CVI沉积的Si-C-N基体所制备的C/Si-C-N复合材料的氧化行为与碳纤维增强SiC陶瓷基(carbon fiber reinforced silicon carbide ceramic,C/SiC)复合材料的完全不同.在600~1 200℃,C/Si-C-N的氧化速率随温度的升高而持续增加,其抗氧化能力在600℃明显高于C/SiC复合材料;在900℃,抗氧化能力与C/SiC复合材料基本相当;在1 200℃,抗氧化能力则低于C/SiC复合材料.C/Si-C-N复合材料所表现出来的氧化行为主要与Si-C-N基体较低的热膨胀系数有关.  相似文献   

10.
对T-700碳纤维(T-700CF)、特种玻璃纤维(HSGF)、S-2高强玻璃纤维(S-2GF)、连续玄武岩纤维(CBF)的基本力学性能和热性能进行了研究和对比,同时对T-700CF、HSGF、S-2GF、CBF增强特种酚醛树脂1(PR1)复合材料的力学性能和烧蚀性能进行了对比,探讨了PR1/CBF的烧蚀机理。结果表明,PR1/T-700CF的弯曲性能和烧蚀性能最佳;PR1/CBF次之,能够取代PR1/S-2GF和PR1/HSGF;PR1/CBF的氧-乙炔烧蚀过程中主要存在着材料吸热、基体材料与气流的热化学反应、热辐射效应、增强材料的熔化和升华、高速粒子和气流冲刷、机械剥离等烧蚀机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号