首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用超声分散技术制备了氟碳树脂/石墨烯复合涂层,通过结合强度测试、接触角测试、电化学测试和盐雾试验等研究了石墨烯对氟碳涂层性能的影响。结果表明,涂层中加入石墨烯后其结合强度、接触角和耐盐雾性能均有一定程度的提高。石墨烯含量为0.05wt%时,复合涂层的涂层电阻和电荷转移电阻比其他涂层高2~3个数量级,具有最好的腐蚀防护性能。  相似文献   

2.
为了提高磷酸镁水泥( MPC)涂料的防腐性能,在 MPC涂料中加入少量的氧化锌并涂覆在 Q235钢表面。通过 Tafel极化曲线、电化学阻抗谱和中性盐雾试验分析改性涂层的防护机理和耐腐蚀性,采用水化热分析、 X射线衍射( XRD)、扫描电镜( SEM)、热重分析( TG-DTG)表征浸泡前后涂层的形貌与成分变化。结果表明: MPC涂料中氧化锌的最佳掺量为 3%,氧化锌的加入使涂层更加密实并在涂层中起到缓蚀剂的作用,使涂层的自腐蚀电位正移;试样在 3. 5%NaCl溶液中浸泡 28 d一直保持稳定,线性极化电阻维持在 106 Ω.cm2数量级,电化学阻抗谱表明改性过后的涂层电阻、电荷转移电阻较空白组明显提高,且盐雾时间 1 440 h后基材未见腐蚀,表现出良好的耐腐蚀性。  相似文献   

3.
针对大型海水淡化关键设备制造成本高、防腐期效短等问题,基于金属表面屏蔽阻隔原理,采用酚醛改性环氧树脂和改性聚酰胺为基料,以氧化铁红、硫酸钡、片状填料等为防腐填料,获得应用于新型低合金耐蚀钢或碳钢基材表面的高屏蔽耐温酚醛环氧重防腐涂料。实验结果表明:该涂料吸水率 1. 2%,抗氯离子渗透性 0. 9×10-3 mg/cm2·d,柔韧性 1 mm,耐冲击性 50 cm,耐 88 ℃海水浸泡 6 000 h,耐盐雾 10 000 h,涂层耐阴极剥离性能测试被剥离涂层距人造漏涂孔外缘平均距离为 4. 5 mm,经 33 d 88 ℃海水浸泡 0. 01 Hz低频阻抗( |Z|0. 01 Hz)条件下该涂层电化学交流阻抗值由 8. 28×1010 Ω·cm2降为 1. 18×108 Ω·cm2,且曲线平滑,说明该涂层具备优异的防腐性能。  相似文献   

4.
为了解决冷轧板耐蚀性差的问题,常在其表面制备聚氨酯涂层。本文以电泳聚氨脂涂层冷轧板(ESPCC)和粉末喷涂聚氨脂涂层冷轧板(PSPCC)为研究对象,进行42 d的循环盐雾试验后,通过扫描电镜、X射线衍射分析和电化学测试来考察其在循环盐雾试验环境中的腐蚀形貌、腐蚀产物组成和电化学行为。结果表明,ESPCC和PSPCC经过42 d循环盐雾腐蚀后的单边扩蚀宽度分别为0.45 mm和0.25 mm。ESPCC比PSPCC的腐蚀颗粒更大,二者的腐蚀产物都是Fe3O4、α-FeOOH、γ-FeOOH和β-FeOOH,但是ESPCC的腐蚀产物的峰值强度高于PSPCC。ESPCC的腐蚀电流密度最大为1.08×10-5A·cm-2,大于PSPCC的最大腐蚀电流密度1.34×10-9A·cm-2;且其腐蚀42 d后电荷转移电阻只有2.88×104Ω?cm2,小于PSPCC腐蚀42 d后的电荷转移电阻1.35×1010Ω?cm2。  相似文献   

5.
以硼酸(BA)为掺杂剂,过硫酸铵(APS)为引发剂,通过化学氧化法合成了硼酸掺杂聚苯胺(PANI-BA).通过傅里叶变换红外光谱(FTIR)、扫描电镜(SEM)、接触角测量仪等对PANI-BA的结构、形貌及疏水性进行了分析.以硅树脂(SiR)为成膜物,在Q235钢表面制备了PANI-BA/SiR复合涂层,测试它的水接触角、吸水率、腐蚀电化学行为及耐盐雾性能.结果表明,PANI-BA具有特殊的形貌,当苯胺与硼酸的物质的量比为1:1.5时,产物为较规整的纳米棒结构,水接触角达144.7°.PANI-BA/SiR复合涂层具有良好的疏水性能和防腐蚀性能,水接触角达120.9°,吸水率仅为1.32%,可耐960 h中性盐雾试验.  相似文献   

6.
为提高水性环氧树脂的机械及防腐性能,首先制备有机金属框架材料,得到三种不同的有机金属框架材料,然后按照不同比例与水性环氧树脂混合均匀得到复合乳液,将其固化为涂层和薄膜。通过扫描电子显微镜、热重分析仪、电化学工作站等对有机金属框架材料和复合薄膜、涂层进行表征。结果表明,加入有机金属框架材料后,水性环氧树脂薄膜性能有所增强。其中加入质量分数为0.3%的ZIF-8/EP复合材料时性能较好,薄膜的拉伸强度为14.68 MPa,与水的接触角为64.4°,阻抗为1.045×109Ω/cm2,相比于纯环氧树脂,其阻抗提升了8.383×108Ω/cm2,薄膜的拉伸强度提升了399.3%,水接触角增加了25.9°。  相似文献   

7.
以有机树脂代替铬酐,在无铬达克罗工艺研究中进行正交试验.从盐雾试验中得出影响无铬达克罗涂层的因素,由大到小依次是:水、增稠荆、固化剂、树脂.用最佳配方制得的涂层与舍铬达克罗涂层进行对比,无铬达克罗涂层的外观比含铬达克罗略差.附着力、机械性能略优,双层耐盐雾时间与含铬达克罗的接近.  相似文献   

8.
为提升光固化金属涂层的防腐性能,以来源于生物基的δ-癸内酯(DL)为原料,首先合成了一系列带疏水侧链的聚癸内酯二元醇,然后与异佛尔酮二异氰酸酯(IPDI)和丙烯酸羟乙酯(HEA)制备了带有疏水侧链的聚氨酯丙烯酸酯,将其用于构筑光固化金属涂层。采用傅立叶变换红外光谱、核磁共振氢谱对其结构进行了表征,研究了聚癸内酯二元醇的化学结构、相对分子质量对所构筑的光固化涂层疏水性以及防腐性能的影响。结果表明:疏水侧链改性后,聚氨酯丙烯酸酯涂层在水中浸泡400 h的吸水率从3%下降至1.4%;在盐水中浸泡400 h的阻抗模值从2.7×107Ω·cm2提升至1.1×109Ω·cm2;在盐雾环境中400 h仅出现轻微点蚀现象;可见疏水侧链改性的聚氨酯丙烯酸酯所构筑的涂层具有更高的耐水性和耐腐蚀性。  相似文献   

9.
为提高超疏油/超亲水涂层的机械耐久性,首次提出以碳纳米管、正硅酸乙酯和丙烯酸树脂为原料,加入全氟辛酸和壳聚糖季铵盐进行改性,喷涂制备出一种具有高机械耐久性的油水分离网。利用接触角测试、砂纸磨损实验和油水分离实验,评价分离网的润湿性、机械耐久性和油水分离能力,并通过光学显微镜和扫描电子显微镜对涂层磨损前后的形貌变化进行分析。结果表明,当碳纳米管掺杂量为1.5%时,制备的涂层油接触角为155.5°,水接触角为0°,具有良好的超润湿性;经过160次砂纸磨损实验,仍保持超疏油/超亲水状态,表现出优异的机械耐久性;在油和水(碱性、酸性、中性、冷、热)的混合溶液中均有96%以上的分离效率和1.6×104 L/(m2·h)以上的渗透通量,经过20次分离后分离效率为96.33%,具有良好的油水分离能力。  相似文献   

10.
在引发剂过氧化苯甲酰(BPO)的作用下,采用甲基丙烯酸六氟丁酯与双酚A环氧树脂(DGEBA)反应合成了含氟侧链的环氧树脂(F-DGEBA),用其制备粉末涂料。运用红外光谱(FT-IR)、接触角、X-射线光电子能谱(XPS)、交流阻抗(EIS)、盐雾试验等方法,研究了含氟环氧树脂的结构、表面性能、电化学性质及耐腐性能。研究结果表明:F-DGEBA涂层对水的静态接触角提高了15°左右,达到95°,在固化过程中,氟元素在表面充分富集,从理论值的5.53%提高到了涂层表面的39.83%,EIS图谱显示提高了3个数量级,经历36 h氯化钠溶液浸泡后,降至普通环氧树脂的水平,盐雾试验表明该粉末涂料具有优异的耐腐蚀性能。  相似文献   

11.
以叔碳酸缩水甘油酯(E-10P)为疏水单体,通过环氧与羧酸的共价键合,在氧化石墨烯(GO)表面引入疏水性支化碳链,改性后的氧化石墨烯(F-GO)作为防锈填料加入环氧树脂中得到F-GO/环氧复合涂料。通过红外光谱、拉曼光谱、X-射线衍射、热重分析对F-GO的结构进行表征,通过场发射扫描电镜观察F-GO及复合涂料的微观形貌,并通过电化学阻抗、极化曲线和盐雾试验测试了复合涂料的防腐性能。结果表明:E-10P可利用其空间效应阻碍片层的团聚;疏水效应可提高F-GO的热稳定性和与环氧树脂的相容性;与空白环氧涂层相比,当复合涂料中F-GO质量分数为0.2%时,厚度为20~25 μm的防腐涂层的腐蚀电流可由2.358 6×10 -6 A/cm 2下降至2.000 2×10 -11 A/cm 2,阻抗值可由1.1×10 7 Ω·cm 2 提升至6.9×10 9 Ω·cm 2。  相似文献   

12.
为减少团聚,提高石墨烯在涂层中的分散性,研究采用纳米分散技术预先制备了石墨烯分散液,再将其分散至环氧树脂中获得石墨烯改性复合涂层。通过对石墨烯含量为 0、0.3%、0.6%的复合涂层进行盐水浸泡、盐雾、阴极剥离实验及电化学性能测试,证明石墨烯的加入显著增强了涂层的防护性能。石墨烯复合涂层在 3.5%盐水中浸泡 1 008 h后,涂层低频阻抗仍大于 106 Ω·cm2比未添加石墨烯的涂层提高了 3个数量级,且盐雾实验 6 000 h后涂层表面仍保持完好;含 0.6%石墨烯,的涂层耐蚀行为劣于石墨烯含量为 0.3%的涂层。  相似文献   

13.
热喷涂氟聚合物、聚偏氟乙烯(PVDF)、乙烯三氟氯乙烯(ECTFE)、全氟烷氧基烷(PFA)和氟化丙烯(FEP)涂层是用火焰喷涂和等离子喷涂法制备的。用这些技术可以制备出高质量的涂层。这些涂装技术都是一步法;无需进行后热处理,这有别于传统的静电沉积法。每一种聚合物粉末的结构和粒径分布都已测定。用等离子和火焰喷涂制备的涂层都用光学显微镜、盐雾实验和液体浸渍试验等作了研究。发现喷涂后的涂层光滑且无孔。在盐雾试验中,未发现侵蚀现象。在两种液体浸渍试验(pH值0.7和0.4)中,只有PFA涂层性能良好。其它涂层在液体浸渍试验中稍有腐蚀现象。可观测到暴露在腐蚀液体中的氟聚台物涂层部分发暗。根据显微图(略),可以看出涂层是十分致密的。  相似文献   

14.
《应用化工》2022,(12):2383-2386
结合长庆油田低渗透非均质高矿化度的特点,对研发的表面活性剂驱油体系CQYH-1进行了基本性能评价,并考察了该体系的润湿反转能力和驱油能力。结果表明,0.1%0.5%的CQYH-1与长庆某油田原油界面张力达到100.5%的CQYH-1与长庆某油田原油界面张力达到10(-3)m N/m数量级,与该油田注入水、采出水配伍性良好。当矿化度为10(-3)m N/m数量级,与该油田注入水、采出水配伍性良好。当矿化度为10100 g/L时,0.5%的CQYH-1界面张力仍能保持10100 g/L时,0.5%的CQYH-1界面张力仍能保持10(-3)m N/m数量级,抗盐性能较好,且具有一定的抗吸附能力。接触角测试实验表明,0.5%的CQYH-1可将岩心表面接触角由70.70°变为0°,改变了岩石表面的润湿性。驱油实验表明,0.5%的CQYH-1可在水驱的基础上,提高采收率9.9%(-3)m N/m数量级,抗盐性能较好,且具有一定的抗吸附能力。接触角测试实验表明,0.5%的CQYH-1可将岩心表面接触角由70.70°变为0°,改变了岩石表面的润湿性。驱油实验表明,0.5%的CQYH-1可在水驱的基础上,提高采收率9.9%16.67%,满足长庆低渗透油田表面活性剂驱油要求。该表面活性剂驱油体系已在长庆某油田现场得到应用,取得了明显的效果。  相似文献   

15.
首先采用双子表面活性剂( GS)对麦羟硅钠石( MAG)进行有机化改性,然后负载苯并三氮唑( BTA),制备了一种负载 BTA的 MAG新型填料( BGM)通过红外光谱和扫描电镜对其结构和形貌进行了表征,然后将 BGM添加到环氧树脂中考察了涂层,性能。结果表明: GS对 MAG进行了有机化改性并成功负载了 BTA,同时 BGM以剥离状片层结构存在;添加 BGM填料的涂层表面光滑平整,微孔大大降低;极化曲线测试表明添加 BGM的涂层腐蚀电流密度和腐蚀电压最小,分别为 2. 42×10-9 A/cm2和-1. 157 V;电化学阻抗谱拟合电路后的 Rct和 Rc分别为 4. 14×106 Ω·cm2和 3. 00×105 Ω·cm2,Rct与 Rc之和最大,说明添加 BGM后涂层的耐腐蚀性最好;水接触角测试表明添加 BGM的涂层的接触,角最大为 89°,说明涂层具有较好的疏水性,从而提高了涂层的防腐性能。  相似文献   

16.
以水性丙烯酸酯乳液为成膜物质,以二氧化硅气凝胶( SA)与空心玻璃微珠( HGB)为隔热填料,同时引入纳米孔和微米孔,制备了具有多尺度孔结构的保温隔热涂料。通过热常数分析仪测量不同 SA、HGB体积比的涂层的导热系数。结果表明:涂层的导热系数与 SA、HGB的体积比密切相关。涂层的导热系数随填料体积分数的增加而减小,当填料体积分数为 70%,SA与 HGM体积比为 8∶2时,涂层导热系数最低为 0. 053 W/(m·K)。使用并联模型、串联模型、 Maxwell模型、 H-C模型对 SA/HGM保温隔热涂层的导热实验数据进行拟合,发现当填料体积分数为 30%时,涂层导热系数可以用 Maxwell模型进行预测;当填料体积分数为 50%和 70%时,需要考虑涂层中开放孔隙的影响,涂层导热系数可以用基于 Maxwell模型的修正模型进行预测。  相似文献   

17.
为了改善石油工业中注聚筛管易堵塞的现状,将聚硅氮烷涂层涂覆于注聚筛管基材表面。考察刷涂和浸涂工艺对涂层表面基本性能的影响,测试并计算涂层的表面能,采用电化学方法测试涂层的耐腐蚀性,并使用X射线衍射仪(XRD)分析腐蚀产物的物相以探讨腐蚀机理。结果表明:刷涂工艺能够得到性能更好的涂层,涂层平均厚度小于8μm,硬度5H,附着力0级。聚硅氮烷改性涂层平均水接触角为107.6°,平均油接触角为47.8°,表面能γS为15.1 mJ/m2,属于低表面能,聚硅氮烷涂层改性后钢片的疏水疏油性及耐腐蚀性均显著提高,从而有利于减少聚合物驱油剂的吸附,降低注聚筛管堵塞的风险,有望用于解决石油开采过程中注聚筛管易堵塞的问题。  相似文献   

18.
磷酸镁水泥( MPC)涂料对碳钢具有良好的防腐能力,但需要对金属基体进行磷酸盐转化等预处理,影响其实际应用。本研究用氢氧化镁部分替换 MPC原料中的重烧氧化镁,涂覆 Q235钢表面。采用扫描电镜、 X射线衍射表征涂层形貌与成分,通过线性极化法、电化学阻抗谱、中性盐雾试验和动电位极化法分析涂层的耐腐蚀性能及其防护机理。结果表明:添加 6%(质量分数)氢氧化镁的 MPC涂层能够有效抑制涂层 -金属界面析氢,且具有更好的耐腐蚀性能。试样浸泡在 3. 5%NaCl溶液中 14 d涂层性能保持稳定,线性极化电阻维持在 104 Ω·cm2数量级,耐盐雾超过 2 400 h。动电位极化曲线表明, MPC涂层具有物理隔离与化学缓蚀双重防护机制。  相似文献   

19.
现役油田用玻璃纤维增强复合材料(GFRP)常工作于酸性盐雾条件之中,为研究盐雾溶液在树脂、GFRP中的扩散行为,分析老化机理及性能,制备了环氧树脂浇铸体及其GFRP NOL环,进行为期50天酸性盐雾老化试验。X射线光电子能谱分析,能谱分析结果表明,溶液中的金属离子、非金属离子由于体积、电荷平衡的限制难以进入材料内部,材料性能劣化主要是由于水分子、 H+的扩散造成的,其扩散行为符合Fick扩散定律,扩散系数为7.26×10-4 mm2/h。傅里叶变换红外光谱显示,靠近外部盐雾溶液的部位,树脂受损严重,形成更多的分子间氢键,推测水分子、 H+沿树脂厚度方向不是均匀分布的。水分子对树脂高分子交联网络产生溶胀作用、在界面产生应力降低界面性能,扫描电子显微镜测试表明,出现了界面脱黏现象;H+会促进酯基的水解并且破坏纤维的完整性,玻璃纤维表面产生了裂纹。老化50 d后GFRP的玻璃化转变温度降低、力学强度下降,层间剪切强度、拉伸强度保留率分别为80.79%,80.22%。  相似文献   

20.
王鑫  王兵兵  杨威  徐志明 《化工进展》2023,(8):4315-4321
超疏水涂层具有极广的应用前景,然而在金属表面制备稳定的超疏水涂层具有一定挑战。为提高涂层稳定性,本文通过简单浸泡法在不锈钢表面形成稳定的聚多巴胺(PDA)中间涂层,随后采用电泳沉积法在PDA修饰后的表面制备聚四氟乙烯(PTFE)超疏水涂层。测试中采用场发射扫描电镜、接触角测试仪及电化学测试仪进行PDA/PTFE涂层分析和表征。制备的PDA/PTFE涂层表面呈现凸起结构,提高电沉积制备时间与溶液中水含量,涂层表面水接触角呈现先增加后降低的变化趋势,制备涂层中最大水接触角为160.2°±1.3°,相应涂层的表面能为5.57mN/m。胶带剥离与砂纸磨损试验表明,PDA/PTFE涂层具有较好的稳定性。污垢沉积试验表明,浸泡在50℃、70℃与90℃碳酸钙过饱和溶液12h后,与不锈钢相比,涂层抑垢率分别为64.71%、72.22%与81.25%。电化学测试表明,PDA/PTFE超疏水涂层具有较好的耐腐蚀性能,与不锈钢相比,涂层缓蚀率为95.1%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号