首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 343 毫秒
1.
泡沫塑料研究状况   总被引:3,自引:0,他引:3  
刘学  王澜 《塑料制造》2007,(11):118-119
综述目前泡沫塑料高性能化的途径以及一些研究成果。包括几种常用传统塑料(如PVC、PUR、PP、PF等)的改性方法和新开发的高性能泡沫塑料(如PEI、PI、PMI、MAA/AN等)。  相似文献   

2.
以丙烯腈(AN)、-甲基丙烯酸(MAA)为主要单体原料,以丙烯酰胺(AM)为第三共聚单体,加入引发剂、发泡剂等自由基本体聚合制得AN-MAA-AM共聚物,然后在高温下将AN-MAA-AM共聚物进行高温发泡得到聚甲基丙烯酰亚胺(PMI)泡沫塑料。详细介绍了PMI泡沫塑料的制备和研究现状,并对PMI泡沫塑料的研究方向进行了展望。  相似文献   

3.
"原位成环"法制备高性能MAA/AN泡沫塑料的研究   总被引:1,自引:0,他引:1  
通过“原位成环”法制备了一种低密度、高强度、高刚性和高耐热性的(甲基丙烯酸/丙烯腈)共聚物(MAA/AN)泡沫塑料。探讨了“原位成环”的机理,采用傅立叶红外光谱仪、热台偏光显微镜和差示扫描量热仪对MAA/AN及其泡沫塑料进行了表征,研究了MAA/AN泡沫塑料的力学性能和耐热性能。结果表明,在发泡和热处理过程中,MAA/AN发生了分子重排环化反应,最终生成的泡沫塑料分子链上具有六元酰亚胺环结构;可发泡MAA/AN的玻璃化转变温度较低,经热处理后泡沫塑料无明显的玻璃化转变;制备的MAA/AN泡沫塑料具有优异的力学性能和耐热性能。  相似文献   

4.
泡沫塑料研究进展   总被引:2,自引:0,他引:2  
从传统泡沫塑料改性和新型泡沫塑料研究两个方面综述目前泡沫塑料高性能化的主要途径和研究方法,着重介绍聚氨酯、聚氯乙烯泡沫塑料等的改性方法及聚酰亚胺、聚甲基丙烯酰亚胺泡沫塑料等新型泡沫塑料的研究进展,并展望了泡沫塑料未来的应用前景和发展趋势。  相似文献   

5.
聚甲基丙烯酰亚胺(PMI)硬质泡沫塑料很长时间以来就为大家所知,它是一种交联、闭孔的泡沫塑料,而且由于其优异的机械性能和低的重量而有广泛的应用,特别是生产层状材料、层压材料、复合材料或泡沫复合体,是制造高性能夹层结构的理想芯层材料。综述了聚甲基丙烯酰亚胺(PMI)硬质泡沫塑料的性能特点、制备以及它的一些应用情况。PMI硬质泡沫塑料代表着新型的高性能泡沫塑料的研究方向。  相似文献   

6.
陈挺  张广成  马瑞 《中国塑料》2008,22(10):67-71
为减小丙烯腈(AN)/甲基丙烯酸(MAA)共聚物泡沫塑料的孔径,对AN/MAA共聚物进行应力发白处理,研究了应力发白对AN/MAA泡沫塑料泡孔孔径的影响,采用显微镜观察了应力发白共聚物在等速升温下的发泡过程,并探讨了应力发白提高气泡成核率的机理。结果表明:对可发泡AN/MAA共聚物进行应力发白,能够显著减小最终泡沫塑料的泡孔孔径,当密度为75 kg/m3时,泡孔孔径由0.59 mm减小到0.076 mm,且在应力发白前后泡孔孔径发生突变;应力发白处理使共聚物生成了新的气液相界面,减小了发泡成核的界面自由能变化,进一步减小了体系的吉布斯自由能变化,从而提高了发泡成核率。  相似文献   

7.
综述了聚甲基丙烯酰亚胺(PMI)泡沫材料的性能、制备工艺、国内外生产研究和应用情况,并指出了今后PMI泡沫塑料研究的方向。  相似文献   

8.
丙烯腈/甲基丙烯酸共聚物泡沫塑料的制备与表征   总被引:14,自引:0,他引:14  
研究了丙烯腈(AN)/甲基丙烯酸(MAA)共聚物泡沫塑料的合成配方和制备该泡沫塑料的方法,对该泡沫塑料进行了光学显微镜、红外光谱和差示扫描量热法分析。结果表明:50份AN、50份MAA、0.1~0.22份偶氮二异丁腈(AIBN)、2.6份甲基丙烯酰胺(MAM)、2~8份正戊醇组成的配方在50℃下聚合为可发泡共聚物,在180℃下发泡并在160℃下热处理,最终制得力学性能和耐热性能优异的硬质闭孔泡沫塑料。加入0.6份的碳酰胺使该泡沫塑料平均孔径由0.50~0.70mm减为0.22mm。在发泡和后处理过程中分子链发生重排反应,生成六元酰亚胺环。发泡剂含量为4份和8份的可发泡AN/MAA共聚物玻璃化转变温度(Tg)分别为38.57℃和34.49℃,而热处理后的泡沫塑料无明显的Tg。  相似文献   

9.
聚甲基丙烯酰亚胺泡沫塑料研究进展   总被引:1,自引:0,他引:1  
综述了聚甲基丙烯酰亚胺(PMI)泡沫塑料的制备方法、性能、国内外研究概况和应用情况,并指出了今后PMI泡沫塑料研究的方向。  相似文献   

10.
综述了聚甲基丙烯酰亚胺(PMI)泡沫塑料的制备方法及其结构和性能PMI是一种交联、闭孔的泡沫塑料,由于其具有良好的力学性能、热变形温度和化学稳定性、成型加工性能,可以通过真空袋中低温共固化的工艺成型,作为夹层结构复合材料的芯层,是高性能夹层结构复合材料的理想芯层材料,现已经广泛用于航空航天、军事、电子等领域。针对目前国外PMI泡沫塑料的研发现状,介绍了一些调变PMI泡沫塑料性能和改进制备工艺的方法,希望对国内PMI泡沫塑料的研究起到借鉴的作用,最后对PMI泡沫塑料的应用做了简单的介绍。  相似文献   

11.
Using methacrylic acid (MAA), acrylonitrile (AN), and acryl amide (AM) as monomers, a new high‐performance PMI copolymer foam was prepared via radical bulk copolymerization and free heat foaming; afterward, the effects of photo initiation polymerization technology on the foam mechanical and craft performances were further researched. The results showed that photo initiation technology was only fit to be used as the prepolymerization reaction during the preparation of PMI copolymer foam, and it was faster and more easily controlled than thermal initiation prepolymerization. Photo initiation prepolymerization could eliminate not only the foam inner flaws, but also the size nonuniformity of the foam cells effectively. Accordingly, photo initiation prepolymerization is able to make the foam uniform, transparent, stable, and isotropy, and moreover improve the foam tensile strength. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
A high‐performance polymethacrylimide (PMI) foam was prepared from the reactive monomers of acrylonitrile (AN) and methacrylic acid (MAA) via ultrasonic combined with thermal initiation radical bulk copolymerization and free heat foaming. The reaction progress of cyano and carboxyl groups were tracked by Fourier transform infrared (FTIR) spectroscopy and X‐ray Photoelectron Spectroscopy, and the results indicated that the imide groups were formed and cyano groups gradually decreased during foaming and thermal treatment. The cell morphologies of the PMI foams were characterized by scanning electron microscopy, and the results showed the PMI foams were consisted of the honeycomb structure. The thermostability of the prepared PMI foam was evaluated by thermogravimetric analysis (TGA), and the results revealed that the PMI foam possessed excellent thermal stability and char forming capability. The mechanical properties of PMI foams were measured by tensile, flexural, and compressive strength, and the responding values for the PMI foams with the density of 32.30 kg m?3 were 0.71, 0.86, and 1.49 MPa, respectively, which demonstrated the obtained PMI foams presented superior mechanical properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44959.  相似文献   

13.
简述了国内外泡沫塑料保温材料的发展现状;介绍了聚氨酯泡沫塑料、聚苯乙烯泡沫塑料和酚醛泡沫塑料的研究进展;展望了泡沫塑料保温材料的应用前景和发展趋势。  相似文献   

14.
在强调高分子材料高性能化、高功能化、复合化、精细人和智能化发展的基础上,较详细地这了高分子合成技术的发展,三大合成材料工业的现状与趋势,以及未来高分子材料发展中几个重要的领域;工程塑料、复合塑料、液昌高分子、高分子分离材料和生物医用高分子材料。  相似文献   

15.
Stress whitening pretreatment on expandable acrylonitrile (AN)/methacrylic acid (MAA) copolymer was adopted to reduce the cell size of high-performance AN/MAA copolymer foam. The article studied the influence of stress whitening on cell structure and mechanical properties of AN/MAA copolymer foam, observed foaming behavior of stress- whitened copolymer by hot stage optical microscopy, and discussed its bubble nucleation mechanism. The results indicate that stress-whitening pretreatment makes the cell size of corresponding copolymer foam reduce sharply when stress whitening occurs. The cell size of copolymer foam with the density of 32 kg/m3 and 75 kg/m3 reduces from 1.07 mm to 0.37 mm and from 0.59 mm to 0.076 mm, respectively. It also causes residual fragmental films in cells. The defects created by stress whitening work first as a bubble nucleus, then expand and combine together as cells. Stress whitening creates new interface between gas and polymer phase and new volume of gas phase, reduces the change of interface free energy and volume free energy during bubble nucleation, and improves the bubble nucleation rate. The foaming phenomenon of stress whitened copolymer is in line with the defect nucleation mechanism. However, stress whitening pretreatment reduces the mechanical properties of final foam because of residual fragmental films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号