首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 282 毫秒
1.
针对红黏土特殊工程性质以及磷石膏固废资源的浪费现象,通过固结试验,以水泥为固化剂,研究不同配合比下磷石膏稳定红黏土的压缩特性,并基于微观结构和矿物组成分析压缩模量变化的机理。结果表明,素红黏土为中压缩性,磷石膏稳定红黏土为中、低压缩性。混合料压缩模量随磷石膏掺量增加先增大后减小,水泥与磷石膏质量比为1∶3时压缩模量最大。各因素对混合料压缩模量的影响程度依次为竖向荷载>水泥掺量>磷石膏掺量。混合料压缩模量与水泥掺量、磷石膏掺量可通过二元三次函数关系拟合。随着磷石膏掺量增加,水泥的水化反应、吸附作用以及钙矾石的生成使混合料孔隙率降低,当水泥与磷石膏质量比为1∶3时,孔隙率最小。当磷石膏掺量继续增大,溶液呈酸性,钙矾石溶解,游离氧化铁减少,团聚体内的胶结作用与咬合作用降低,压缩模量减小。  相似文献   

2.
硫酸盐类工业固废造成的环境污染和资源浪费问题引起了国内外学者的广泛关注,当前中国两种典型的硫酸盐类固废(电解锰渣和磷石膏)堆存量巨大,造成严重的环境污染,其无害化与资源化利用刻不容缓。依据电解锰渣、磷石膏两种固体废弃物的特性,利用电解锰渣和磷石膏结合矿渣制备复合胶凝材料,探究了磷石膏和水泥不同掺量对复合胶凝材料硬化体力学性能的影响。通过XRD、SEM和EDS分析了硬化体的物相组成和微观形貌变化特征,同时对硬化体进行毒性浸出测试。结果表明:硬化体各龄期强度随着水泥掺量增加而增大,硬化体各龄期强度随着磷石膏掺量增加而减小。复合胶凝材料较优配合比(质量分数)为电解锰渣为50%、磷石膏为20%、矿渣为30%,水泥外掺12%的硬化体28 d抗压强度为27.1 MPa,硫酸盐固废复合胶凝材料的水化产物主要为水化硅酸钙(C-S-H)凝胶和钙矾石(AFt)。养护至28 d的硬化体浸出液中可溶性Mn2+、NH4+-N、PO43-和重金属离子浓度稳定后满足GB 8978—1996《污水综合排放标准...  相似文献   

3.
王洪国  苏纪壮  张民  汲平  王鑫洋  刘健 《硅酸盐通报》2021,40(12):4209-4216
为综合分析铁尾矿砂水泥稳定碎石混合料路用性能的影响因素,本文对不同铁尾矿砂掺量(矿料质量的0%、5%、10%、15%、20%、25%)及不同成型方式(传统连续搅拌、振动搅拌)的水泥稳定碎石混合料的物理力学性能、耐久性及微观结构进行试验研究。研究结果表明,铁尾矿砂的加入能够提高水泥稳定碎石混合料的无侧限抗压强度、间接拉伸强度、水稳定性、抗冻性。当铁尾矿砂用量为10%时,水泥稳定碎石混合料的强度、水稳定性、抗冻性达到最大值;当铁尾矿砂掺量为5%时,水泥稳定碎石混合料的疲劳寿命最长。振动搅拌制备试样较连续搅拌有更高的强度、水稳定性、抗冻性及耐疲劳性能;振动搅拌制备的铁尾矿水泥稳定碎石混合料内部水泥水化程度更高,水化产物分布更均匀,能够降低混合料因应力集中而破坏的风险。  相似文献   

4.
马瑜  李北星  杨洋 《水泥》2020,(5):9-14
研究了工业化生产的改性磷石膏球对水泥标准稠度用水量、凝结时间、胶砂流动度、胶砂强度及水泥与减水剂相容性的影响,并与原状磷石膏和天然石膏进行对比,结合X-射线衍射、综合热分析等微观测试,分析了改性磷石膏球对水泥水化产物相、水化程度的影响.结果表明:采用改性磷石膏球配制的水泥,其初凝、终凝时间与掺配原状磷石膏水泥相比分别缩短217 min、227 min,1d、3d强度显著高于原状磷石膏配制的水泥,28d强度高于天然石膏配制的水泥,且标准稠度用水量、胶砂流动度、与减水剂的相容性等指标优于天然石膏配制的水泥.改性磷石膏球对水泥早期水化无不良延缓作用,且能提高水泥后期水化程度.综合对比上述三种石膏对水泥性能影响的各项指标,认为改性磷石膏球可以完全替代天然石膏作水泥缓凝剂.  相似文献   

5.
提高磷石膏基水泥早期性能的研究   总被引:3,自引:0,他引:3  
通过磷石膏预处理和添加超细硅酸盐水泥熟料的方法,对提高磷石膏基水泥早期性能进行了研究,并通过XRD、SEM对其水化过程和机理进行了探讨。结果表明,磷石膏经钢渣预处理,或采用超细熟料粉作为碱性激发剂,均能显著改善磷石膏基水泥的早期强度和凝结特性,两种措施同时采用时,能制备出3d抗压强度超过10MPa,28d抗压强度达49MPa以上的磷石膏基水泥。钢渣固结或固化了磷石膏中缓凝的可溶性杂质,超细粉磨使熟料自身水化加快并同时促进了矿渣水化,是磷石膏基水泥早期水化性能提高的原因。  相似文献   

6.
石正国  郭辉 《硅酸盐通报》2012,31(4):799-803
为大量利用磷石膏,本文采用在复合水泥中掺加磷石膏的方法,开展了制备低热、微膨胀复合水泥的试验研究,并采用DSC、XRD、SEM及等温水化热仪表征了该复合水泥的水化特征.研究结果表明:磷石膏具有显著的缓凝效果,通过掺加Na2SO4和提高磷石膏掺量的方法,可大幅度缩短水泥的凝结时间、提高水泥的早期强度.当磷石膏掺量超过10%时,水泥水化产物中钙矾石量显著增加,并出现二水石膏,硬化水泥浆体呈现出微膨胀性.通过调整磷石膏的掺量,可控制复合水泥的膨胀率.  相似文献   

7.
以原状磷石膏为研究对象,在用热重分析与相组成分析技术探究磷石膏脱水温度与时间的基础上,研究了球磨时间对原状磷石膏粒径大小及分布、磷石膏硬化体以及磷石膏-水泥胶结料性能的影响。原状磷石膏脱水温度为130 ℃、脱水时间为60 min。在0~20 min,延长球磨时间可以有效降低磷石膏-水泥胶结料的流动度,缩短凝结时间,磷石膏硬化体以及磷石膏-水泥胶结料的力学强度先提高后降低。最优球磨时间为15 min,此时原状磷石膏粒径约为29 μm;所得的磷石膏-水泥胶结料具有较好的力学性能和耐水性能。  相似文献   

8.
将磷铝酸盐水泥熟料掺入硅酸盐水泥中改性后,运用XRD和SEM等测试技术,研究了石膏对改性硅酸盐水泥性能的影响.结果表明,石膏的掺入可以改善改性硅酸盐水泥的力学性能和抗冻性;在石膏掺量为3.5%时,改性硅酸盐水泥水化速度最快,硬化浆体的结构最致密,强度最高,抗冻性最好.  相似文献   

9.
磷β半水石膏中掺入不同质量分数的水泥和矿粉,组成磷石膏-水泥-矿粉复合材料,主要研究了其耐水性能和体积稳定性,并且采用X射线衍射、扫描电子显微镜等技术分析硬化体的水化产物.结果表明:当水泥和矿粉的掺量分别为5%和25%的时候,其28d的软化系数为0.85,同时体积稳定性好.水泥和矿粉水化过程中,生成的主要产物水化硅酸钙(C-S-H)和钙矾石(AFt)会包裹磷石膏晶体,填充在硬化体的空隙之中,并且二水石膏晶体形貌由交错排列的短粗状变为板状.  相似文献   

10.
磷石膏的微量组分及其对水泥凝结、水化和硬化的影响   总被引:12,自引:5,他引:12  
借助差热分析、热失重、X射线衍射和扫描电镜等测试手段,分析了磷石膏的微量组分,研究了磷石膏对硅酸盐水泥物理性能及水化过程和水化产物的影响,进而探讨了磷石膏对水泥单矿物的水化作用机理。  相似文献   

11.
磷石膏是磷酸生产过程中用硫酸处理磷矿时产生的固体废渣,其主要成分是二水硫酸钙。用非煅烧的磷石膏作为主要原料,添加砂石、水泥和复合激发剂可制备墙体材料。本文通过正交实验,确定了最佳配比,并对磷石膏制墙体材料进行了相关的机理探讨。  相似文献   

12.
王浩  邓航  刘数华 《硅酸盐通报》2021,40(2):534-541
以锑尾矿微粉作为主要原料,辅以水泥熟料、活化剂和促凝剂制备锑尾矿粉基复合胶凝材料,并从力学性能及微观结构等方面对复合胶凝材料的水化特性进行探究。结果表明,试件浆体的抗压强度随着锑尾矿微粉掺量的增加而减小,质量掺量为70%时仍满足尾矿固化筑坝要求。不同活化剂对复合胶凝材料强度的影响显著不同,当掺入磷石膏和生石灰且其质量比例为2∶1时,试件活化效果最好,7 d抗压强度达到10.42 MPa。试件浆体的最终水化产物主要为C-S-H凝胶和氢氧化钙,此外还有少量钙矾石生成。选择铝酸盐水泥作为促凝剂且质量掺量为3%时,能有效缩短试件凝结时间,满足快速固化的要求。同时利用锑尾矿粉基复合胶凝材料可以实现细粒锑尾矿的快速原位固化。  相似文献   

13.
施麟芸  匡敬忠  刘松柏  鲁亚  严峻 《硅酸盐通报》2022,41(10):3511-3524
我国铜尾矿排放及储量巨大,造成环境污染和资源浪费。铜尾矿矿物成分复杂、颗粒粒度较细等问题限制了铜尾矿的高效高附加值利用。本文综述了铜尾矿的矿物属性、物理化学性能特征及其在建材化应用过程中的技术和控制要求,从铜尾矿用于蒸压加气混凝土、水泥基材料、水泥熟料、砖、微晶玻璃、多孔材料、充填材料等多个途径,总结了铜尾矿的主要应用方式、作用特征和主要成分的影响作用规律。为铜尾矿等固废生产型企业协同建材行业系统解决尾矿资源化问题提供参考,协同建材行业的发展方向和产品要求,提出了未来尾矿资源建材化处置的关键性问题,为真正实现尾矿的产品资源化利用提供支持。  相似文献   

14.
利用工业废渣研制复合水泥   总被引:1,自引:0,他引:1  
丁欣  金文辉  成岳  焦创  杨文俊 《陶瓷学报》2011,32(3):475-479
本试验采用粉磨再混合的方式,利用正交试验方法,研究了废石膏、铜矿尾砂、混凝污泥及粉煤灰的不同组合对复合水泥物理性能的影响,在组分为粉煤灰14.05%、废石膏2.24%、混凝污泥22.47%、铜矿尾砂11.24%以及普通水泥50%获得复合水泥,28天后的抗折强度、抗压强度分别为28.30MPa和50.21MP。利用工业废料生产复合水泥,可就地取材,降低成本,同时解决了废渣料的贮存难问题,对保护环境有重要意义。  相似文献   

15.
以航道整治废弃超细砂为主要原料,通过振动成型制备砂混凝土(Sand Concrete).首先通过干拌振捣密实计算干拌物密度的方法研究矿粉掺量对砂混凝土干拌物密度的影响,然后以试件7 d、14 d和28 d抗压强度、劈裂抗拉强度和浸水抗压强度为控制标准,研究矿粉掺量对砂混凝土性能的影响,最后通过XRD对砂混凝土试件进行分析.试验结果表明:在水胶比为0.38,减水剂掺量为0.5%情况下,砂混凝土最佳配合比为废弃超细砂75.3%、水泥16.5%、矿粉8.2%.采用最佳配合比所制砂混凝土28 d抗压强度、劈裂抗拉强度和浸水抗压强度均达到最优, XRD分析表明所制砂混凝土含有大量水化硅酸钙(C-S-H)和钙矾石等水化产物.研究为航道整治废弃超细砂的开发利用提供一种技术途径,对于废弃超细砂资源丰富而普通混凝土砂石材料匮乏的地区具有显著的经济价值和广阔的应用前景.  相似文献   

16.
采用石灰中和改性二水磷石膏,再添加水泥、机制砂及增塑剂制备水泥基湿拌抹灰砂浆,分析了磷石膏、水泥及增塑剂不同掺量下湿拌砂浆的凝结时间、稠度以及力学强度等物理性能,并采用X射线衍射(XRD)及扫描电镜(SEM)分析了磷石膏在湿拌砂浆中的作用机理。结果表明,随着磷石膏用量增加,湿拌砂浆的凝结时间延长,28 d抗压强度及14 d拉伸黏结强度降低;随着水泥用量增加,砂浆的凝结时间缩短,强度逐渐增大;随着增塑剂用量的增加,砂浆的黏结性能及润滑性能逐步优异,凝结时间逐渐增加。当控制材料掺量比例(质量分数)磷石膏为35%、机制砂为48%、水泥为17%、外掺石灰为2%、增塑剂为0.3%时,砂浆的凝结时间为25 h,28 d抗压强度为6.2 MPa,14 d拉伸黏结强度为0.31 MPa,均符合行业标准JC/T 230—2007《预拌砂浆》中WP M5质量技术指标要求。磷石膏在水泥基湿拌砂浆中的主要作用是参与反应的磷石膏提供硫酸根并与水化铝酸钙反应生成钙矾石,形成提高砂浆强度的矿物起胶结作用,未反应的磷石膏作为细集料起填充作用。  相似文献   

17.
针对以弱胶结砂岩作为填料引起的路基病害问题,提出以水泥改良弱胶结砂岩的可行性,分别用水泥掺量为3%、4%、5%、6%、7%、8%、9%改良弱胶结砂,对改良试样进行击实试验、压缩试验、直剪试验、无侧限抗压强度试验、加州承载比等试验,得到水泥改良弱胶结砂岩作为路基填料是可行的,水泥掺量为6%时,改良填料的压缩性能,填料试样的抗剪强度、各龄期的无侧限抗压强度、承载能力等路用性能均大幅度增强,所以水泥掺量为6%对弱胶结砂岩的改良效果最为明显.  相似文献   

18.
选用碱矿渣水泥作为胶凝材料,结合Dinger-Funk方程的最紧密堆积理论,用粉煤灰漂珠作为矿物掺合料,并用铜尾矿砂部分取代天然砂来提高粉体的堆积密度,制备套筒灌浆料。研究了塑性膨胀剂掺量、粉煤灰漂珠掺量、铜尾矿掺量、砂胶比对套筒灌浆料性能的影响,并对最紧密堆积设计配合比进行了验证。结果表明:随着塑性膨胀剂掺量的增加,套筒灌浆料的竖向膨胀率不断增大,流动度增大,1 d和3 d抗压强度降低;随着粉煤灰漂珠掺量的增加,套筒灌浆料的流动度不断增大,而抗压强度不断降低;随着铜尾矿掺量的增加,套筒灌浆料的流动度不断降低,抗压强度先增大后减小;砂胶(质量)比增大时,套筒灌浆料流动度不断降低,抗压强度先增大后减小;质量配合比为塑性膨胀剂掺量0.2%,砂胶比1.1,粉煤灰漂珠掺量12%,铜尾矿掺量13%时(以上均为质量分数),能制出初始流动度340 mm,30 min流动度280 mm,1 d抗压强度37.2 MPa,3 d抗压强度63.0 MPa,28 d抗压强度86.4 MPa,3 h竖向膨胀率为0.20%,24 h竖向膨胀率为0.36%的套筒灌浆料。  相似文献   

19.
将磷石膏应用于建筑业,可以解决磷化工副产物堆积的问题。采用单因素实验,通过改变水灰质量比、粉煤灰掺量、生石灰掺量等条件来研究各因素对磷石膏基胶凝材料力学性能及保温性能的影响,借助X射线衍射(XRD)、X射线荧光光谱(XRF)、扫描电镜(SEM)等手段来分析磷石膏基胶凝材料的物化性质和形貌结构。结果表明,磷石膏基胶凝材料的导热系数和抗压强度都与水灰质量比呈负相关,在水灰质量比为0.250时胶凝材料的抗压强度最大、水灰质量比为0.550时胶凝材料的导热系数最小;粉煤灰在磷石膏基胶凝体系中除了提供胶凝性能外,还会被生石灰激发出活性,增强胶凝体系的综合性能,粉煤灰掺量为50%(质量分数)时胶凝体系的综合性能最佳;生石灰在磷石膏基胶凝体系中对杂质的吸附效果明显,生石灰掺量超过7%(质量分数)以后对胶凝体系的保温性能和力学性能的增强效果明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号