首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hiller B  Herdmann A  Nuernberg K 《Lipids》2011,46(7):557-567
Changes in fatty acid composition of longissimus muscle and subcutaneous adipose tissue of German Holstein bulls induced by a grass-silage/n-3 fatty acid based intervention diet versus a maize-silage/n-6 fatty acid based control diet were analyzed and related to shifts in lipogenic gene expression, protein expression, and enzyme activity patterns. Significantly higher amounts of n-3 fatty acids and by mean factors of 2.2–2.5 decreased n-6/n-3 fatty acid ratios in both tissues were obtained upon n-3 fatty acid intervention. In longissimus muscle, these changes of fatty acid profiles were associated with reduced SREBP1c (p = 0.02), ACC (p = 0.00), FAS (p = 0.10) and SCD (p = 0.03) gene expression, Δ6D (p = 0.03) and SCD (p = 0.03) protein expression as well as SCD enzyme activity (p = 0.03). In subcutaneous adipose tissue, significantly reduced ACC (p = 0.00) and FAS (p = 0.01) gene expression, SCD protein expression (p = 0.02) and SCD enzyme activity (p = 0.03) were detected upon n-3 fatty acid intervention, although lower degrees of correlation between gene and corresponding gene products were obtained in relation to longissimus muscle. The study elucidates tissue-specific functional genomic responses to dietary fatty acid manipulation in regard to fatty acid profile tailoring of animal tissues.  相似文献   

2.
The aim of this study was to evaluate the association between adipose tissue trans-fatty acid isomers and adiposity. This cross-sectional study included 1,785 subjects from Costa Rica. Fatty acid concentrations (as a percentage of the total fatty acids) in subcutaneous adipose tissue were assessed by gas–liquid chromatography. Dietary intakes were assessed with a food frequency questionnaire. Multivariate linear regression models were used to relate adipose tissue trans-fatty acid content to BMI, waist circumference, and skinfold thickness while adjusting for age, sex, and area of residence. To account for variations in lifestyle, we adjusted for smoking, physical activity, income, self-reported history of diabetes and hypertension, and for adipose tissue alpha-linolenic acid and energy intake in a third model. After adjustments, positive associations were found between 18:2t-fatty acids (primarily from partially hydrogenated oils) and BMI, waist circumference, and skinfold thickness (P for each association <0.01). Rumenic acid was positively associated with skinfold thickness (P < 0.0001), but not with BMI or waist circumference (P > 0.05). Inverse associations were found between 16:1n-7t-fatty acids and skinfold thickness and between 18:1t-fatty acids and BMI and waist circumference (P < 0.0001). This study suggests that individual trans-fatty acid isomers may have divergent effects on adiposity. 18:2t-fatty acids show consistent positive associations with measures of adiposity. These isomer-specific associations are an interesting new finding. Other prospective and intervention studies are necessary to examine these relationships further.  相似文献   

3.
We hypothesized that consumption of saturated fatty acids in the form of high‐fat ground beef for 5 weeks would depress liver X receptor signaling targets in peripheral blood mononuclear cells (PBMC) and that changes in gene expression would be associated with the corresponding changes in lipoprotein cholesterol (C) concentrations. Older men (n = 5, age 68.0 ± 4.6 years) and postmenopausal women (n = 7, age 60.9 ± 3.1 years) were assigned randomly to consume ground‐beef containing 18% total fat (18F) or 25% total fat (25F), five patties per week for 5 weeks with an intervening 4‐week washout period. The 25F and 18F ground‐beef increased (p < 0.05) the intake of saturated fat, monounsaturated fat, palmitic acid, and stearic acid, but the 25F ground‐beef increased only the intake of oleic acid (p < 0.05). The ground‐beefs 18F and 25F increased the plasma concentration of palmitic acid (p < 0.05) and decreased the plasma concentrations of arachidonic, eicosapentaenoic, and docosahexaenic acids (p < 0.05). The interventions of 18F and 25F ground‐beef decreased very low‐density lipoprotein C concentrations and increased particle diameters and low‐density lipoprotein (LDL)‐I‐C and LDL‐II‐C concentrations (p < 0.05). The ground‐beef 25F decreased PBMC mRNA levels for the adenosine triphosphate (ATP) binding cassette A, ATP binding cassette G1, sterol regulatory element binding protein‐1, and LDL receptor (LDLR) (p < 0.05). The ground‐beef 18F increased mRNA levels for stearoyl‐CoA desaturase‐1 (p < 0.05). We conclude that the increased LDL particle size and LDL‐I‐C and LDL‐II‐C concentrations following the 25F ground‐beef intervention may have been caused by decreased hepatic LDLR gene expression.  相似文献   

4.
Paterson LJ  Weselake RJ  Mir PS  Mir Z 《Lipids》2002,37(6):605-611
The content and positional distribution of CLA in TAG fractions of lamb tissues was examined with either preformed CLA or the linoleic acid precursor of CLA in the diet as experimental treatments. The CLA content of phospholipid (PL) from these tissues was also examined. Thirteen lambs were randomized to the following dietary treatments: (i) control diet (no supplement); (ii) CLA supplementation (0.33 g d−1 for 21 d prior to weaning) to milk-replacer of pre-ruminating lambs, or (iii) feeding linoleic acid-rich oil (6% safflower oil on a dry matter basis) to weaned ruminating lambs. At slaughter, tissue samples were procured from diaphragm, rib muscle, and subcutaneous (SC) adipose tissue. Safflower oil supplementation in the diet resulted in an increase in CLA content of the TAG from diaphragm, rib muscle, and SC adipose tissue by about threefold (P<0.05) on a mol% basis. CLA was localized to the sn-1/3 positions of TAG. Animals that received pre-formed CLA, however, had increased proportions of CLA at the sn-2 position of TAG from SC adipose tissue, suggesting that there were tissue-specific dietary effects and possible age-related effects on the mode of FA incorporation into TAG. Safflower oil supplementation in the diet had no effect on the CLA content of PL from diaphragm, rib muscle, and SC adipose tissue, suggesting that CLA was preferentially incorporated into the TAG of these tissues.  相似文献   

5.
The aim of this study was to determine the effect of n3 polyunsaturated fatty acids (PUFA) on canine adipose tissue secretion of adiponectin, interleukin‐6 (IL6), and tumor necrosis factor‐α (TNFα). Subcutaneous and omental visceral adipose tissue samples were collected from 16 healthy intact female dogs. Concentrations of adiponectin were measured in mature adipocyte cultures, and concentrations of IL6 and TNFα were measured in undifferentiated stromovascular cell (SVC) cultures following treatment with eicosapentaenic acid (EPA, 20:5n‐3), arachidonic acid (ARA, 20:4n‐6), or palmitic acid (PAM, 16:0) at 25, 50, or 100 μM. Secretion of adiponectin from mature adipocytes was higher (p < 0.001) following EPA treatment at 50 μM compared to control in subcutaneous tissue, and higher following EPA treatment compared to PAM treatment at 25 μM in both subcutaneous (p < 0.001) and visceral tissues (p = 0.010). Secretion of IL6 from SVC derived from subcutaneous tissue was lower following EPA treatment and higher following PAM treatment compared to control both at 50 μM (p = 0.001 and p = 0.041, respectively) and 100 μM (p = 0.013 and p < 0.001, respectively). These findings of stimulation of adiponectin secretion and inhibition of IL6 secretion by EPA, and stimulation of IL6 secretion by PAM, are consistent with findings of increased circulating concentrations of adiponectin and decreased circulating concentration of IL6 in dogs supplemented with dietary fish oil, and show that the effect of fish oil on circulating concentrations of adiponectin and IL6 is, at least partially, the result of local effects of EPA and PAM on adipose tissue.  相似文献   

6.
The aim of the present study was to elucidate whether the qualitative compositiion of dietary fat influences plasma leptin and adipose tissue ob gene expression differentially. Two high-fat diets and a diet rich in carbohydrate were each administered both ad libitum and with a 25% energy restriction. The high-fat diets contained 58 energy percent as either monounsaturated FA (MUFA) or saturated FA (SAFA), whereas the carbohydrate-rich diet (CH) contained 7 energy percent as fat. We aimed at obtaining the same final weight for the animals in the ad libitum group as in the energy-restricted groups. This goal was reached at he same time (days 22–24) for all groups except for the ad libitum animals fed on saturated fat (day 36). The plasma leptin concentrations on ad libitum CH and MUFA diets did not differ significantly (24.3 ± 2.1 and 34.7 ± 6.7 ng/mL, respectively) whereas the saturated fat diet caused a lower concentration (13.9 ± 1.9 ng/mL; P < 0.05). Interestingly, no differences in plasma leptin levels between groups were seen in the energy-restricted groups (mean 8.0 + 1.0 ng/mL). The type of diet did not alter the ob gene expression in intraabdominal white adipose tissue; however, a lower expression level was found in the energy-restricted groups. The percentage of body fat in the three ad libitum fed groups did not differ (23 ± 1%). Thus, short-term administration of a diet rich in SAFA suppresses circulating leptin levels without altering the adipose tissue ob gene expression. This indicates that saturated fat may alter protein handling by adipose tissue or the whole body clearance of leptin.  相似文献   

7.
The goal of the current study was to investigate regulation of key genes involved in lipid metabolism in adipose and liver to relate lipolytic and lipogenic capacities with physiological changes at the pre-laying, onset of laying, and actively laying stages of quail. Followed by a 50 % increase from pre-laying to onset of laying, adipose to body weight ratio was significantly reduced by 60 % from the onset of laying to the actively laying stage (P < 0.05), mainly resulting from the significantly increased adipocyte size from the pre-laying stage to the onset of laying and reduction of adipocyte size from the onset of laying to the actively laying stage (P < 0.05). In the adipose tissue of actively laying quail, increased protein expression and phosphorylation of adipose triglyceride lipase (ATGL) together with an elevated mRNA expression of comparative gene identification-58, an activator of ATGL, contributes to increased lipolytic activity, as proved by increased amounts of plasma non-esterified fatty acid (P < 0.05). In addition, decreased mRNA expression of fatty acid transport protein in the actively laying quail could contribute to the adipocyte hypotrophy (P < 0.05). In the liver, relative mRNA expression of apo-very low density lipoprotein (VLDL)-II increased significantly from the pre-laying to actively laying stages (P < 0.05), indicating increased apoVLDL-II actively facilitated VLDL secretion in the actively laying quail. These results suggest that the laying birds undergo active lipolysis in the adipocyte, and increase VLDL secretion from the liver in order to secure a lipid supply for yolk maturation.  相似文献   

8.
Cherian G  Ai W  Goeger MP 《Lipids》2005,40(2):131-136
The effects of feeding CLA to hens on newly hatched chick hepatic and carcass lipid content, liver TAG accumulation, and FA incorporation in chick tissues such as liver, heart, brain, and adipose were studied. These tissues were selected owing to their respective roles in lipid assimilation (liver), as a major oxidation site (heart), as a site enriched with long-chain polyunsaturates for function (brain), and as a storage depot (adipose). Eggs with no, low, or high levels of CLA were produced by feeding hens a corn-soybean meal-basal diet containing 3% (w/w) corn oil (Control), 2.5% corn oil +0.5% CLA oil (CLA1), or 2% corn oil +1.0% CLA oil (CLA2). The egg yolk content of total CLA was 0.0, 1.0, and 2.6% for Control, CLA1, and CLA2, respectively (P<0.05). Maternal dietary CLA resulted in a decrease in chick carcass total fat (P<0.05). Liver tissue of CLA2 chicks had the lowest fat content (P<0.05). The liver TAG content was 8.2, 5.8, and 5.1 mg/g for Control, CLA1, and CLA2 chicks, respectively (P<0.05). The chicks hatched from CLA1 and CLA2 incorporated higher levels of cis-9,trans-11 CLA in the liver, plasma, adipose, and brain than Control (P<0.05). The content of 18∶0 was higher in the liver, plasma adipose, and brain of CLA1 and CLA2 than Control (P<0.05), but no difference was observed in the 18∶0 content of heart tissue. A significant reduction in 18∶1 was observed in the liver, plasma, adipose, heart, and brain of CLA1 and CLA2 chicks (P<0.05). DHA (22∶6n−3) was reduced in the heart and brain of CLA1 and CLA2 chicks (P<0.05). No difference was observed in carcass weight, dry matter, or ash content of chicks (P>0.05). The hatchabilities of fertile eggs were 78, 34, and 38% for Control, CLA1, and CLA2, respectively (P<0.05). The early dead chicks were higher in CLA1 and CLA2 than Control (18 and 32% compared with 9% for Control), and alive but not hatched chicks were 15 and 19% for CLA1 and CLA2, compared with 8% for Control (P<0.05). Maternal supplementation with CLA leads to a reduction in hatchability, liver TAG, and carcass total fat in newly hatched chicks.  相似文献   

9.
Maternal supplementation with CLA decreases milk fat in humans   总被引:2,自引:2,他引:0  
CLA refers to isomers of octadecadienoic acid with conjugated double bonds. The most abundant form of CLA (rumenic acid (RA): c9,t11-18∶2) is found in milk and beef fat. Further, CLA supplements containing RA and t10,c12−18∶2 are now available. Consumption of commercially produced CLA has been shown to decrease adipose accretion in growing laboratory and production animals and cause milk fat depression in cows. We tested the hypothesis that CLA supplementation would increase milk CLA concentration and decrease milk fat content in humans. Breastfeeding women (n=9) participated in this double-blind, placebo-controlled, crossover study divided into three periods: intervention l (5 d), washout (7 d), and intervention II (5 d). Women were randomized to treatment order. During each intervention period, women consumed 1.5 g of CLA supplement or placebo (olive oil) daily; during the washout period, no supplements were consumed. Milk was collected by complete breast expression on the final day of each period; milk output was estimated by 24-h weighing on the penultimate day of each intervention period. Milk RA and t10,c12−18∶2 concentrations were greater (P<0.05) during the CLA treatment period as compared to the placebo period. Milk fat content was significantly lower during the CLA treatment, as compared to the placebo treatment (P<0.05). Data indicate no effect of treatment on milk output. Therefore, it would be prudent that lactating women not consume commercially available CLA supplements at this time. This paper was published in part in Masters, N., McGuire, M.A., and McGuire, M.K. (1999) Conjugated Linoleic Acid Supplementation and Milk Fat Content in Humans, FASEB J. 13, A697.  相似文献   

10.
Fibrates, including fenofibrate, are a class of hypolipidemic drugs that activate peroxisome proliferator-activated receptor α (PPARα), which in-turn regulates the expression of lipid and lipoprotein metabolism genes. We investigated whether fenofibrate can reduce visceral obesity and nonalcoholic fatty liver disease via adipose tissue PPARα activation in female ovariectomized (OVX) C57BL/6J mice fed a high-fat diet (HFD), a mouse model of obese postmenopausal women. Fenofibrate reduced body weight gain (−38%, p < 0.05), visceral adipose tissue mass (−46%, p < 0.05), and visceral adipocyte size (−20%, p < 0.05) in HFD-fed obese OVX mice. In addition, plasma levels of alanine aminotransferase and aspartate aminotransferase, as well as free fatty acids, triglycerides, and total cholesterol, were decreased. Fenofibrate also inhibited hepatic lipid accumulation (−69%, p < 0.05) and infiltration of macrophages (−72%, p < 0.05), while concomitantly upregulating the expression of fatty acid β-oxidation genes targeted by PPARα and decreasing macrophage infiltration and mRNA expression of inflammatory factors in visceral adipose tissue. These results suggest that fenofibrate inhibits visceral obesity, as well as hepatic steatosis and inflammation, in part through visceral adipose tissue PPARα activation in obese female OVX mice.  相似文献   

11.
Background: Metformin is commonly used to treat gestational diabetes mellitus. This study investigated the effect of maternal metformin intervention during obese glucose-intolerant pregnancy on the gonadal white adipose tissue (WAT) of 8-week-old male and female mouse offspring. Methods: C57BL/6J female mice were provided with a control (Con) or obesogenic diet (Ob) to induce pre-conception obesity. Half the obese dams were treated orally with 300 mg/kg/d of metformin (Ob-Met) during pregnancy. Gonadal WAT depots from 8-week-old offspring were investigated for adipocyte size, macrophage infiltration and mRNA expression of pro-inflammatory genes using RT-PCR. Results: Gestational metformin attenuated the adiposity in obese dams and increased the gestation length without correcting the offspring in utero growth restriction and catch-up growth caused by maternal obesity. Despite similar body weight, the Ob and Ob-Met offspring of both sexes showed adipocyte hypertrophy in young adulthood. Male Ob-Met offspring had increased WAT depot weight (p < 0.05), exaggerated adipocyte hyperplasia (p < 0.05 vs. Con and Ob offspring), increased macrophage infiltration measured via histology (p < 0.05) and the mRNA expression of F4/80 (p < 0.05). These changes were not observed in female Ob-Met offspring. Conclusions: Maternal metformin intervention during obese pregnancy causes excessive adiposity, adipocyte hyperplasia and WAT inflammation in male offspring, highlighting sex-specific effects of prenatal metformin exposure on offspring WAT.  相似文献   

12.
The present study compared the effect of dietary conjugated linolenic acid (CLNA) on body fat and serum and liver lipid levels with that of CLA in rats. FFA rich in linoleic acid, α-linolenic acid, CLA, or CLNA were used as experimental fats. Male Sprague-Dawley rats (4 wk old) were fed purified diets containing 1% of one of these experimental fats. After 4 wk of feeding, adipose tissue weights, serum and liver lipid concentrations, serum tumor necrosis factor (TNF)-α and leptin levels, and hepatic β-oxidation activities were measured. Compared with linoleic acid, CLA and, more potently, CLNA were found to reduce perirenal adipose tissue weight. The same trend was observed in the weight of epididymal adipose tissue. CLNA, but not CLA, was found to significantly increase serum and liver IG concentrations. Serum FFA concentration was also increased in the CLNA group more than in the other groups. The activity of β-oxidation in liver mitochondria and peroxisomes was significantly higher in the CLNA group than in the other groups. Thus, the amount of liver TG exceeded the ability of hepatic β-oxidation. Significant positive correlation was found between the adipose tissue weights and serum leptin levels in all animals (vs. perirenal: r=0.557, P<0.001; vs. epididymal: r=0.405, P<0.05). A less significant correlation was found between adipose tissue weights and serum TNF-α level (vs. perirenal: r=0.069, P<0.1; vs. epididymal: r=0.382, P<0.05). Although the mechanism for the specific effect of CLNA is not clear at present, these findings indicate that in rats CLNA modulated the body fat and TG metabolism differently from CLA.  相似文献   

13.
Current work was conducted to evaluate the cholesterol‐lowering effect of coptisine extracted from Rhizomacoptidis in Syrian golden hamsters. The safety results indicated that coptisine was a safe and low‐toxic compound. Coptisine showed a beneficial effect in the abnormal serum lipid levels induced by a high‐fat and high‐cholesterol diet (HFHC): at a concentration of 70.05 mg/kg, coptisine significantly led to a decrease in total cholesterol, triglycerides, and low‐density lipoprotein cholesterol (LDL‐c) levels by 26.70, 15.38, and 22.22 %, respectively, and high‐density lipoprotein cholesterol (HDL‐c) was increased by 41.74 % in serum of hamsters (p < 0.01). In addition, total bile acid (TBA) levels in feces of hamsters were elevated after coptisine administration. Further investigation has suggested that the mRNA and protein expression of 3‐hydroxy‐3‐methyl‐glutaryl‐CoA reductase (HMGCR) in the liver of hamsters was down‐regulated by high‐dosage coptisine treatment (p < 0.05); mRNA and protein expression of low‐density lipoprotein receptor (LDLR) and cholesterol 7α‐hydroxylase (CYP7A1) were dramatically up‐regulated by coptisine administration. The apical sodium‐dependent bile salt transporter expression was down‐regulated in the coptisine‐treated animals, but showed no significant differences from the HFHC groups. Taken together, our results demonstrate that a high dosage of coptisine could inhibit cholesterol synthesis via suppressing the HMGCR expression and promoting the use and excretion of cholesterol via up‐regulating LDLR and CYP7A1 expression. These findings suggest a critical role for coptisine in anti‐ hypercholesterolemia, and thus it needs to be considered as a potential natural cholesterol lowering agent.  相似文献   

14.
To provide molecular evidence on the thermogenic mechanism of primary brown adipocytes, western blot analysis was used to detect brown adipose tissue (BAT)-specific gene expressions. BAT protects the mammals from hypothermia injury with a large amount of mitochondria and high expression of uncoupling Protein 1 (UCP1), which is the vital protein to determine the heat production in BAT. In our previous study, the compound ZW290 (the structure shown in Fig. 1) was obtained by molecular docking with a UCP1 inducer. In the present study, ZW290 not only significantly upregulated the expression of UCP1 protein (p < 0.01) and its related signaling pathway in the primary brown adipocytes, but also remarkably decreased the mitochondrial membrane potential and the concentration of adenosine triphosphate (ATP) (p < 0.01). Kunming (KM) mice were kept under acute cold exposure (−20°C) to evaluate the preventive and protective effects of ZW290 on cold injury, and revealed its regulating mechanism in vitro. The rectal and body temperatures of ZW290-treated mice were significantly higher than those of the control (or model) group both at room temperature and at −20°C (p < 0.001). Hematoxylin–eosin (HE) staining and immunohistochemistry indicated that ZW290 notably decreased the size of lipid droplets in BAT and increased the content of mitochondria and the expression of UCP1 in BAT and white adipose tissue (WAT). Furthermore, the survival rate showed that ZW290 could prolong the overall survival of mice. Therefore, we obtained the conclusion that ZW290 might transform energy into heat by inhibiting ATP synthesis and increasing the expression of UCP1. Additionally, ZW290 may enhance cold tolerance by increasing heat production through increasing the content of mitochondria and the expression of UCP1 in BAT and WAT.  相似文献   

15.
Quality loss of two gadiform fish species (blue whiting, Micromesistius poutassou; hake, Merluccius merluccius) during frozen storage (–30 and –10 °C; up to 12 months) was studied. For this, hydrolytic (formation of free fatty acids, FFA) and oxidative (conjugated dienes, peroxide and interaction compound formation) lipid damage were analysed. For both species, individual fishes captured in two different trials (May and November) were considered. Increasing (p <0.05) lipid hydrolysis and oxidation (peroxide and interaction compound formation) were observed for all kinds of samples throughout the frozen storage. Interaction compound detection by fluorescence analysis showed the best correlation values with storage time. Some higher (p <0.05) hydrolysis development could be observed in hake captured in May than in its counterpart from the November trial, while frozen blue whiting did not provide definite differences for FFA formation between both trials. Concerning peroxide formation, higher (p <0.05) values were obtained for individual blue whiting and hake captured in November when compared to their corresponding May fish for both frozen storage conditions. Interaction compound formation was also found to be higher (p <0.05) for November hake fish than for its counterpart captured in May, while blue whiting did not provide definite differences between trials.  相似文献   

16.
Recently, we reported that administration of Bifidobacteria resulted in increased concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in murine adipose tissue [1]. The objective of this study was to assess the impact of co-administration of Bifidobacterium breve NCIMB 702258 and the substrate for EPA, α-linolenic acid, on host fatty acid composition. α-Linolenic acid-supplemented diets (1%, wt/wt) were fed to mice (n = 8), with or without B. breve NCIMB 702258 (daily dose of 109 microorganisms) for 8 weeks. Two further groups received either supplement of B. breve alone or unsupplemented diet. Tissue fatty acid composition was assessed by gas liquid chromatography. Dietary supplementation of α-linolenic acid resulted in higher (P < 0.05) α-linolenic acid and EPA concentrations in liver and adipose tissue and lower (P < 0.05) arachidonic acid in liver, adipose tissue and brain compared with mice that did not receive α-linolenic acid. Supplementation with B. breve NCIMB 702258 in combination with α-linolenic acid resulted in elevated (P < 0.05) liver EPA concentrations compared with α-linolenic acid supplementation alone. Furthermore, the former group had higher (P < 0.05) DHA in brain compared with the latter group. These results suggest a role for interactions between fatty acids and commensals in the gastrointestinal tract. This interaction between administered microbes and fatty acids could result in a highly effective nutritional approach to the therapy of a variety of inflammatory and neurodegenerative conditions.  相似文献   

17.
Arterial homeostasis is dictated by hemodynamics and intercellular communications. Therefore, the present study exposed vascular cells to mechanical forces and conditioned medium to determine the impact of intracellular communication on cell responses. Endothelial cells exposed to flow and flow-conditioned medium demonstrated the most significant up regulation of COX-2 (p < 0.01), ecNOS (p < 0.01), and PDGF-B (p < 0.05) mRNA. When exposed to pressure and control medium, endothelial cells expressed COX-2 (p < 0.01), ecNOS (p < 0.01), and PDGF-B (p < 0.01) mRNA to a lesser extent than cells exposed to flow and control medium. In addition, cell growth studies in the presence of flow- and pressure-conditioned medium revealed decreased (p < 0.05) endothelial cell growth and increased (p < 0.05) smooth muscle cell growth. Ultimately, understanding the effects of chemical mediators released by vascular cells under physiological and pathological conditions will aid in elucidating the development and progression of atherosclerosis.  相似文献   

18.
In vitro work suggests that conjugated linoleic acid (CLA) isomers (c9,t11 and t10,c12) are cytotoxic to human breast cancer cells, however the mechanism remains unknown. Using human MCF-7 breast cancer cells, we examined the effects of c9,t11 and t10,c12 CLA compared to oleic acid (OA), linoleic acid (LA), or untreated cells on cell membrane phospholipid composition, cell survival, and the insulin-like growth factor-I (IGF-I) and the downstream insulin receptor substrate-1 (IRS-1). Both CLA isomers were incorporated into membrane phospholipids (p < 0.05). Compared to untreated cells, c9,t11 or t10,c12 CLA significantly reduced the metabolic activity of IGF-I stimulated MCF-7 cells, increased lactate dehydrogenase (LDH) release, and decreased cellular concentrations of the IGF-I receptor (IGF-IR) and insulin receptor substrate-1 (p < 0.05). Incubation with t10,c12 CLA also reduced the levels of phosphorylated IGF-1R. The effects on all of these measures were greater (p < 0.05) for t10,c12 CLA compared to c9,t11 CLA. There were few differences between LA-treated and c9,t11 CLA-treated cells, whereas cellular metabolic activity, LDH release, and IGF-IR concentrations differed between t10,c12 CLA-treated and LA-treated cells (p < 0.05). OA stimulated growth compared to the untreated condition (p < 0.05). In summary, this study demonstrated that the t10,c12 CLA isomer inhibits growth of MCF-7 cells and suggested that this may be mediated through incorporation into cellular phospholipids and interference with the function of IGF-I and related signaling proteins.  相似文献   

19.
We investigated plasma sphingomyelin (CerPCho) and ceramide (Cer) levels in pediatric patients with cystic fibrosis (CF) and primary ciliary dyskinesia (PCD). Plasma samples were obtained from CF (n = 19) and PCD (n = 7) patients at exacerbation, discharge, and stable periods. Healthy children (n = 17) of similar age served as control. Levels of 16–24 CerPCho and 16–24 Cer were measured by LC–MS/MS. Concentrations of all CerPCho and Cer species measured at exacerbation were significantly lower in patients with CF than PCD. 16, 18, 24 CerPCho, and 22, 24 Cer in exacerbation; 18, 24 CerPCho, and 18, 20, 22, 24 Cer at discharge; 18, 24 CerPCho and 24 Cer at stable period were significantly lower in CF patients than healthy children (p < 0.001 and p < 0.05). All CerPCho and Cer levels of PCD patients were significantly higher except 24 CerPCho and 24 Cer during exacerbation, 24 CerPCho at discharge, and 18, 22 CerPCho levels at stable period (p < 0.001 and p < 0.05) compared with healthy children. There was no significant difference among exacerbation, discharge, and stable periods in each group for Cer and CerPCho levels. This is the first study measuring plasma Cer and CerPCho levels in PCD and third study in CF patients. The dramatic difference in plasma levels of most CerPCho and Cer species found between two diseases suggest that cilia pathology in PCD and CFTR mutation in CF seem to alter sphingolipid metabolism possibly in opposite directions.  相似文献   

20.
Conjugated linoleic acid (CLA) is a popular supplement believed to enhance immune function, body composition and insulin sensitivity, but results of scientific studies investigating its effects are conflicting. The isomer- and tissue-specific effects of CLA may explain these conflicting results. Therefore, this study quantified the incorporation of the c9t11 and t10c12 CLA isomers into adipose tissue and skeletal muscle in response to supplementation in healthy, regularly-exercising, non-obese persons. The CLA group (n = 14) ingested 3.9 g per day CLA (50:50 t9c11:c10t12) and the placebo group (n = 11) 3.9 g per day high-oleic-acid sunflower oil for 12 weeks. Following supplementation, the t10c12 isomer was incorporated into adipose tissue triacylglycerol (P < 0.001), and the c9t11 isomer tended to increase in skeletal muscle phospholipids (P = 0.056). Therefore, human adipose tissue and skeletal muscle are enriched with CLA in an isomer-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号