首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 317 毫秒
1.
陈娟  王杰  常飞  徐彬 《广州化工》2014,(17):7-9
半导体纳米TiO2作为一种光催化材料已经广泛应用于环保领域。过渡金属掺杂由于能扩大材料可见光响应范围,提高对光量子的利用率,成为近年来的研究热点。本文主要介绍近年来铁掺杂纳米TiO2的研究进展,简要介绍该材料的合成制备方法,并归纳了铁掺杂量、煅烧温度等因素对该材料的光催化降解效果的影响并展望了该材料的光催化应用前景。  相似文献   

2.
提高纳米二氧化钛可见光光催化活性研究的进展   总被引:15,自引:1,他引:15  
综述了近年来提高纳米TiO2可见光光催化活性的研究,主要包括:对纳米TiO2进行表面复合与衍生、金属离子掺杂、半导体偶合、非金属元素掺杂改性和染料敏化等技术,并分析了各种不同掺杂改性机理.最后,展望了提高纳米TiO2可见光光催化活性研究进展的前景.  相似文献   

3.
马丽萍  赵杉林  李萍  王辉 《当代化工》2014,(9):1863-1867
TiO2是一种宽禁带N型半导体纳米材料,也是具有光催化能力的光催化材料。本文概述了纳米TiO2的制备方法,分析了纳米TiO2的抗菌性及抗菌机理,并且综述了纳米TiO2掺杂阴、阳金属离子和复合半导体等后复合材料的抗菌性及抗菌机理,文末进一步思考展望了纳米TiO2在其他功能材料领域有待解决的研究问题。  相似文献   

4.
TiO2是一种宽禁带N型半导体纳米材料,也是具有光催化能力的光催化材料。本文概述了纳米TiO2的制备方法,分析了纳米TiO2的抗菌性及抗菌机理,并且综述了纳米TiO2掺杂阴、阳金属离子和复合半导体等后复合材料的抗菌性及抗菌机理,文末进一步思考展望了纳米TiO2在其他功能材料领域有待解决的研究问题。  相似文献   

5.
吴晓林  袁东 《广东化工》2014,(9):100-101,110
TiO2在利用光能和环保等领域具有重要应用前景。针对近年来纳米TiO2研究的新成果,对纳米TiO2的制备方法、光催化反应机理做了简要阐述,重点介绍了目前在纳米TiO2掺杂改性方面,尤其是非金属掺杂和共掺杂改性方面的研究进展。指出了TiO2研究进程中存在的主要问题、发展前景及今后的研究方向。  相似文献   

6.
纳米TiO2是一种重要的半导体光催化剂,在众多领域具有广阔的研究及应用前景。以稀土Ce为掺杂元素,采用溶胶-凝胶法制备了Ce掺杂纳米TiO2(纳米Ce/TiO2),通过XRD、BET、SEM等技术对其进行表征。设计L9(34)正交实验研究了不同条件对纳米Ce/TiO2的结构及表面特征的影响,优化了纳米Ce/TiO2的制备条件。初步研究了Ce/TiO2的光催化抗菌性能,表明Ce掺杂能够改善纳米TiO2的光催化抗菌性能。  相似文献   

7.
TiO_2光催化剂非金属掺杂的机理研究进展   总被引:1,自引:0,他引:1  
根据国内外对TiO2光催化剂改性的研究状况,将TiO2光催化剂的改性研究分为金属离子掺杂、贵金属沉积、表面光敏化、复合半导体、非金属离子掺杂等方面.其中,非金属掺杂较其他方式的掺杂优势明显,但其机理研究不够深入.对TiO2光催化剂的各种非金属掺杂的机理研究进展进行了综述.  相似文献   

8.
稀土元素掺杂纳米TiO2可以通过改变晶型转变温度、晶粒大小等,提高光催化活性.介绍了近年来国内外利用不同种类稀土元素掺杂对TiO2光催化性能的影响和研究现状.最后指出稀土与其他元素复合掺杂改性TiO2是今后的一个重要研究方向.  相似文献   

9.
提高纳米TiO2可见光催化活性的元素掺杂方法研究进展   总被引:1,自引:0,他引:1  
对比分析了通过金属元素掺杂、非金属元素掺杂、金属,非金属共掺杂等方法可见光催化活性条纳米TiO2的研究现状,综合评述了目前国内外进行了掺杂改性纳米TiO2光催化材料的发展趋势,指出金属,非金属共掺杂改性是提高纳米TiO2可见光催化活性的未来研究重点。  相似文献   

10.
燃烧合成Ag、La掺杂纳米TiO2及光催化性能研究   总被引:1,自引:0,他引:1  
采用燃烧合成法制备了Ag、La掺杂纳米TiO2.XRD实验表明,La掺杂TiO2为单一相锐钛矿结构,Ag掺杂TiO2中出现了少量金红石相,与未掺杂纳米TiO2比较,Ag、La掺杂使TiO2晶体粒度更小,约8 nm.TEM实验表明,产物粒度分布均匀.用掺杂纳米TiO2降解罗丹明B,研究了元素掺杂量对TiO2催化性能的影响.结果表明,当Ag和TiO2摩尔比为1∶150、La和TiO2摩尔比为1∶75时,两种材料的催化能力最好,均优于未掺杂TiO2.比较Ag、La掺杂TiO2的催化性能,La掺杂TiO2的催化能力更强,在实验条件下,紫外光照射1.5 h,罗丹明B的降解率为99.0%.  相似文献   

11.
综述了纳米TiO2光催化剂的4种改性方法:贵金属沉积法、离子掺杂法、复合半导体法和表面光敏化法及改性机理,并总结了改性TiO2在活性炭纤维表面的负载工艺研究进展,为今后改性TiO2光催化复合材料的发展提出了建议,旨在为以改性TiO2为基础的新型光催化材料的研究提供思路。  相似文献   

12.
文章综述了近年来研究二氧化钛可见光催化活性的最新进展。其中主要包括氧化物掺杂、金属离子掺杂、非金属掺杂、染料敏化、二氧化钛表面复合与衍生、半导体耦合等,同时探讨了各种不同掺杂改性的机理。最后,对提高二氧化钛的可见光催化活性的研究方向与前景进行了展望。  相似文献   

13.
可见光活性纳米TiO2光触媒研究进展   总被引:5,自引:0,他引:5  
刘鑫  刘福田  张宁  王冬至 《陶瓷学报》2006,27(1):139-144
简要概述了具有可见光活性的纳米TiO2光触媒的光催化机理,该机理与紫外光光催化机理的不同之处在于其电荷传输与分离机制。结合近年来TiO2光触媒的研究成果,分别从离子掺杂、离子注入、复合半导体、表面贵金属沉积和染料光敏化五个方面对纳米TiO2光触媒的可见光化研究作了较为详细的总结,以期推动纳米TiO2光触媒在我国的发展。  相似文献   

14.
综述了近几年来国内外利用非金属掺杂、有机染料的表面敏化、金属离子的掺杂、金属氧化物掺杂复合以及贵金属表面沉积等方法来改善二氧化钛可见光活性方面所取得的进展。最后,在总结的基础上提出了建议。  相似文献   

15.
综述了近年来纳米TiO2光催化剂在表面贵金属沉积、表面耦合、表面敏化、掺杂和催化剂固定化等方面的改性研究;介绍了纳米TiO2光催化剂在对含油废水、药物废水、印染废水、造纸废水、表面活性剂废水、重金属废水和无机物非金属废水等处理过程中的应用;最后展望了纳米TiO2光催化剂的发展和应用前景.  相似文献   

16.
罗东卫 《工业催化》2014,22(1):76-80
研究掺杂型TiO2光催化剂对土壤中有机污染物的分解效果及其催化剂的催化活性,考察不同金属离子掺杂型TiO2光催化剂在土壤中加入量、光催化剂分散方式、光照时间、土壤的水分与厚度等因素的变化,通过超声萃取-高效液相色谱测定了光催化剂对有机污染物五氯酚的分解效果。结果显示,掺杂型TiO2光催化剂的光催化活性不仅与自身对光的响应范围、吸收强度以及掺杂金属离子种类有关,还与晶体结构及分解的物质有关,表明光催化剂的催化活性是多方面因素共同作用的结果。  相似文献   

17.
分析了金属-半导体表面的接触机理及肖特基势垒的形成,探讨了离子掺杂行为对势垒的影响机理,研究了光生载流子的迁移对TiO2半导体复合材料光催化活性的影响。结果表明,不同金属基体材料对表面势垒高度的影响程度不同,同掺杂离子的表面态对金属-半导体接触的影响也有差别,离子可以改变半导体功函数, La3+、Cu2+和Fe3+在同一浓度掺杂,对半导体的功函数影响不同,使载体和离子对电子和空穴捕获能力有所差异。  相似文献   

18.
铋系半导体材料具有特殊的层状结构以及合适的带隙,具有良好的可见光响应能力以及稳定的光化学特性,作为一类新型的环境友好型光催化剂在环境修复与解决能源危机等领域受到广泛关注,已成为近年来的研究热点。然而,铋系半导体光催化剂距离实际大规模应用仍存在一些亟需解决的问题,如光生载流子复合率高、对可见光谱的响应范围有限、光催化活性较差、还原能力较弱等。本文首先介绍了铋系半导体材料的典型特征、制备方法与反应机理,在此基础上着重阐述了铋系半导体光催化在形貌调控、构建异质结、离子掺杂、碳质材料掺杂、贵金属沉积、染料敏化等改性手段的研究进展以及在降解水体污染物、杀菌消毒、空气净化、制氢、还原CO2、有机合成等领域的应用成果。最后对铋系半导体光催化剂的未来前景做出展望,指出其未来的研究方向应致力于从多手段耦合改性、拓展其应用领域以及深入探究反应机理等方面开展。  相似文献   

19.
三乙胺是一种应用广泛但对人体有毒副作用的挥发性有机物,需要长期有效的监测,开发一种性能稳定、安全可靠的三乙胺气敏传感器,实现对环境中三乙胺气体浓度实时检测,对于三乙胺的安全储存、运输和使用等环节是至关重要的。金属氧化物半导体基气敏传感器具有制备简单、价格低廉、响应值高等优点,在三乙胺气体的检测中具有不可替代的作用。重点介绍了基于金属氧化物半导体的三乙胺传感器最新研究进展。综述了近年来包括掺杂、异质结、有机金属骨架和氧化还原石墨烯在内的关于金属氧化物半导体基三乙胺气敏材料的制备和性能等方面的研究成果。论述了金属氧化物半导体基复合材料对三乙胺气敏性能的机理。展望了金属氧化物基三乙胺气敏材料的未来研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号