首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate of hydroformylation of 1-octene catalyzed by a water soluble catalyst is measured in mechanically agitated batch reactor at various stirrer speeds and organic phase holdups. The data have been analyzed by coupling reaction kinetics to a pseudo-homogeneous gas–liquid–liquid model based on Higbie's penetration theory which takes into account the presence of the dispersed organic phase. A rapid liquid–liquid mass transfer of the reactants is assumed leading to an equilibrium between the continuous and the dispersed phases. The predicted values of the rate are in good agreement with the experimental one. The depletion of the organic substrate in the continuous phase is found negligible.  相似文献   

2.
Evolutions of drop/particle size and size distribution in liquid–liquid dispersions and suspension polymerizations of methyl methacrylate (MMA) were monitored by using an online optical reflectance measurement (ORM), and effects of operating parameters such as the agitation rate, concentration of poly(vinyl alcohol) (PVA) dispersant, and initial concentration of poly(methyl methacrylate) (PMMA) in MMA monomer on the Sauter mean diameter (d32) and size distribution of drop/particle were investigated. According to the variations of d32 of drops/particles with time, four characteristic particle formation stages can be identified for suspension polymerization process. The factors that lead to increase the rate of drop break up, such as increasing of concentration of PVA and decreasing of viscosity of dispersed phase, would postpone the particle growth stage. The d32 and size distribution breadth of drops/particles were significant increased when the liquid–liquid dispersions or suspension polymerizations were conducted at low PVA concentrations or MMA/PMMA solutions with high PMMA contents were used as the dispersed phase, in consistent with the scanning electron micrograph observation on final PMMA particles. It is clear that ORM can be effectively applied in online monitoring of size and size distribution of drops/particles in the liquid–liquid dispersions and suspension polymerizations. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43632.  相似文献   

3.
Liquid–liquid–liquid phase transfer catalysis (L–L–L PTC) offers orders of magnitude intensification of rates of reaction and better selectivities than the biphasic PTC. The catalyst-rich middle phase is the main reaction phase. The etherification or alkoxylation of p-chloronitrobenzene (PCNB) was conducted by using alkanol and alkali instead of the metal alkoxide. A kinetic model is presented and validated.  相似文献   

4.
The flow in a gas–liquid–solid circulating fluidized bed is self‐organised and manifests itself with clustering of particles and bubbles. The clustering behaviour in the fluidized bed at low solid holdups of resin particles was experimentally investigated with a high‐speed image measurement and treatment technique of complementary metal oxide semiconductor to enhance the fundamental understanding on such a flow. Several new physical quantities were suggested to characterise such ordered flow structures. The main findings are as follows. The clusters of solid particles largely exist as doublets and triplets, the mixed groups of particles and bubbles mostly exist as one bubble carrying two to four particles. Increasing superficial liquid velocity, particle diameter or density weakens the aggregation degrees of both particle and mixed clusters in the riser and downer, except that the increase of superficial liquid velocity enhances the mixed clustering behaviour in the riser. The climbing of the auxiliary liquid velocity or liquid phase viscosity intensifies the aggregation behaviour, except that the increase of liquid phase viscosity reduces the mixed clustering degree in the riser. The influences of superficial gas velocity and surface tension of liquid phase on the clustering behaviour seem to be a little complex and the trends are not simply increasing or decreasing. The life cycle of solid particle clusters in the GLS riser is not sensitive to the operation conditions, being around 0.07 s. The mixed clusters' life cycle is more sensitive to the conditions and physical properties of phases, changing from 0.02 to 0.07 s.  相似文献   

5.
Liquid dispersion in the radial direction was investigated in the riser of a viscous liquid-solid fluidized bed 0.102 m in diameter and 3.5 m in height. Pressure fluctuations in the riser were also measured and analyzed to examine the behavior of fluidized particles. Effects of liquid velocity (0.15–0.45 m/s), solid circulation rate (2–8 kg/m2s), particle size (1–3 mm), and liquid viscosity (0.96–38 mPas) on pressure fluctuations and the liquid radial dispersion coefficient were determined. The infinite space model was employed to obtain the radial dispersion coefficient from the radial concentration profiles of the tracer. The pressure fluctuations were analyzed by means of autocorrelation coefficient as well as power spectral density function. The dominant frequency obtained from the autocorrelation coefficient or power spectral density function of pressure fluctuations decreases with increasing liquid viscosity or liquid velocity, but it increases with increasing particle size. The liquid radial dispersion coefficient decreases with increasing liquid velocity or viscosity, but it increases as the solid circulation rate or particle size increases. The liquid radial dispersion coefficient is related closely to the resultant behavior of fluidized particles. The radial dispersion coefficient has been well correlated with operating variables in terms of dimensionless groups.  相似文献   

6.
In this paper, the experimental results of dispersion of two immiscible liquids in a vibromixer are presented. The investigations covered three of the most important problems for vibro-mixing of liquid–liquid systems: the critical conditions, power consumption, and phase dispersion. The data obtained were presented in dimensionless correlations describing the influence of both: the operating conditions and physical properties of dispersed liquids on the process. Also new forms of dimensionless numbers for vibro-mixing are proposed.  相似文献   

7.
Liquid dispersion in the radial direction was investigated in the riser of a viscous liquid-solid fluidized bed 0.102 m in diameter and 3.5 m in height. Pressure fluctuations in the riser were also measured and analyzed to examine the behavior of fluidized particles. Effects of liquid velocity (0.15-0.45 m/s), solid circulation rate (2-8 kg/m2s), particle size (1-3 mm), and liquid viscosity (0.96-38 mPas) on pressure fluctuations and the liquid radial dispersion coefficient were determined. The infinite space model was employed to obtain the radial dispersion coefficient from the radial concentration profiles of the tracer. The pressure fluctuations were analyzed by means of autocorrelation coefficient as well as power spectral density function. The dominant frequency obtained from the autocorrelation coefficient or power spectral density function of pressure fluctuations decreases with increasing liquid viscosity or liquid velocity, but it increases with increasing particle size. The liquid radial dispersion coefficient decreases with increasing liquid velocity or viscosity, but it increases as the solid circulation rate or particle size increases. The liquid radial dispersion coefficient is related closely to the resultant behavior of fluidized particles. The radial dispersion coefficient has been well correlated with operating variables in terms of dimensionless groups.  相似文献   

8.
We applied an Eulerian–Eulerian two‐fluid model on an upward dispersed oil–water flow in vertical pipe with 80 mm diameter and 2.5 m length. The numerical profiles of the radial distribution of the oil drops at 1.5 m from the inflow are compared to the experimental data of Lucas and Panagiotopoulos (Flow Meas Instrum. 2009;20:127–135) This article analyzes the roles of turbulence and interfacial forces on the phase distribution phenomenon. In liquid–liquid flow the relative velocity is low and the distribution of the dispersed phase is mainly governed by the turbulence. This work highlights the important role of the turbulent contribution obtained by averaging the added mass force on the radial distribution profiles of the oil drops. The numerical results present improved profiles of the dispersed phase comparing to the experimental data when this turbulent contribution is taken into account in the momentum balance. © 2017 American Institute of Chemical Engineers AIChE J, 63: 4214–4223, 2017  相似文献   

9.
The effect of chaotic temperature fluctuations on the immersed heater‐to‐bed heat transfer coefficient (h) are investigated in a liquid‐liquid‐solid fluidized bed (0.152 m ID × 2.5 m in height). The time series of temperature fluctuations are measured and analyzed by means of the multidimensional phase space portraits and Kolmogorov entropy (K), in order to characterize the chaotic behavior of heat transfer coefficient fluctuations in the bed. The overall heat transfer coefficient is inversely proportional to the Kolmogorov entropy of temperature fluctuations, as well as the fluctuation range of heat transfer coefficient (Δhi). The Kolmogorov entropy and fluctuation range of the heat transfer coefficient (Δhi) increase with increasing dispersed phase velocity, but decrease with increasing particle size. However, they attain their minima with variation of the continuous phase velocity as well as the bed porosity, at which point the flow regime of particles in the beds changes. The overall heat transfer coefficient is directly correlated with the Kolmogorov entropy, as well as the fluctuation range of heat transfer coefficient.  相似文献   

10.
油水两相分散流液滴粒径预测模型   总被引:1,自引:0,他引:1       下载免费PDF全文
吕宇玲  何利民  程浩  罗小明 《化工学报》2012,63(7):2059-2063
油水两相分散流的液滴粒径及其分布在很大程度上影响管路压降等流动参数,研究液滴粒径预测模型对揭示油水两相流的流动特性具有重要意义。通过研究湍流脉动动能与乳状液的界面能之间的平衡、管流径向速度脉动与摩擦速度之间的关系以及泵的剪切作用,建立了油水两相管流中分散相液滴粒径预测模型;在水平管道上对油水两相分散流的液滴特性进行了实验研究,采用高速摄像和显微镜拍摄获得液滴数据,探索含油率、流量和温度等因素对粒径的影响。预测模型计算结果与不同流量、温度和含油率条件下的实验数据吻合较好。根据预测模型计算了有泵和无泵情况下分散流液滴粒径,发现泵的剪切和扰动作用使得分散液滴具有更小的粒径,泵对液滴粒径及其分布起到了显著作用。  相似文献   

11.
Local velocity gradients on a solid spherical surface have been studied in a bubble column and in two- and three-phase fluidized beds, in order to clarify the influence of gas flow. The electrochemical method, measuring apparent local mass transfer coefficients, was verified and used to obtain the local velocity gradients, shear stresses and total frictional forces. The observed mass transfer rate was independent of liquid velocity, owing to a non-changing flow structure around the particles and not to averaging opposing effects. The identity in flow structure also held for three-phase fluidized beds up to a superficial gas velocity of 5 cm s?1. The dramatic increase in velocity gradient on gas introduction was not a result of decreased homogenous density, but was caused by a change in the turbulent structure around a particle, leaving a larger portion of the total drag as frictional drag, thus improving the mass transfer characteristics of the bed. Use of velocity gradient measurements, including span of fluctuations and exposure time, to predict biomass growth and mechanical degradation in a reactor is also discussed.  相似文献   

12.
New data are presented on drop size distribution at high dispersed phase fractions of organic‐in‐water mixtures, obtained with a light back scattering technique (3 Dimensional Optical Reflectance Measurement technique, 3D ORM). The 3D ORM technique, which provides fast, in‐situ and on‐line drop distribution measurements even at high concentrations of the dispersed phase, is validated using an endoscope attached to a high‐speed video recorder. The two techniques compared favourably when used in a dispersion of oil (density (ρ) = 828 kg m?3, viscosity (µ) = 5.5 mPa s, interfacial tension (σi) = 44.7 mN m?1) in water for a range of 5–10% dispersed phase fractions. Data obtained with the ORM instrument for dispersed phase fractions up to 60% and impeller speeds 350–550 rpm showed a decrease in the maximum and the Sauter mean drop diameters with increasing impeller speed. Phase fractions did not seem to significantly affect drop size. Both techniques showed that drop size distributions could be fitted by the log‐normal distribution. Copyright © 2005 Society of Chemical Industry  相似文献   

13.
The pressure drop and the dispersed phase drop size distribution have been measured for flow through SMX static mixer elements, in columns of diameter 41.18 and 15.75 mm, for a continuous phase of aqueous corn syrup and a dispersed phase of silicone oil. For single-phase flow the pressure drops were consistent with known literature correlations. In the presence of the dispersed phase the pressure drops were increased about 20% above the expected single-phase values, showing more short-term fluctuations but with no significant effect of the flow fraction of the dispersed phase. Droplet size distributions were measured by the computer-aided analysis of images from a digital camera. For shorter lengths of packing the distributions showed a significant “tail” at the large-diameter end, but as the packing length was increased the tail decreased or became non-existent. The mean drop sizes have been compared with a new model based on drop formation at equivalent point sources within the packing.  相似文献   

14.
This work reports our pioneering application of the nuclear magnetic resonance imaging (MRI) technique to the dynamic in situ studies of gas–liquid–solid reactions carried out in a catalytic trickle bed reactor at elevated temperature. The major advance of these studies is that MRI experiments are performed under reactive conditions. We have applied MRI to map the distribution of liquid phase inside a catalyst pellet as well as in a catalyst bed in an operating trickle-bed reactor. In particular, our studies have revealed the existence of the oscillating regimes of the heterogeneous catalytic hydrogenation reaction caused by the oscillations of the catalyst temperature and directly demonstrated the existence of the coupling of mass and heat transport and phase transitions with chemical reaction. The existence of the partially wetted pellets in a catalyst bed which are potentially responsible for the appearance of hot spots in the reactor has been also visualized. The combination of NMR spectroscopy with MRI has been used to visualize the spatial distribution of the reactant-to-product conversion within an operating reactor.  相似文献   

15.
A numerical approach is developed to gain fundamental insight in liquid‐liquid dispersion formation under well‐controlled turbulent conditions. The approach is based on a free energy lattice Boltzmann equation method, and relies on detailed resolution of the interaction of the dispersed and continuous phase at the microscopic level, including drop breakup and coalescence. The capability of the numerical technique to perform direct numerical simulations of turbulently agitated liquid‐liquid dispersions is assessed. Three‐dimensional simulations are carried out in fully periodic cubic domains with grids of size . The liquids are of equal density. Viscosity ratios (dispersed phase over continuous phase) are in the range 0.3–1.0. The dispersed phase volume fraction varies from 0.001 to 0.2. The process of dispersion formation is followed and visualized. The size of each drop in the dispersion is measured in‐line with no disturbance of the flow. However, the numerical method is plagued by numerical dissolution of drops that are smaller than 10 times the lattice spacing. It is shown that to mitigate this effect it is necessary to increase the resolution of the Kolmogorov scales, such as to have a minimum drop size in the range 20–30 lattice units [lu]. Four levels of Kolmogorov length scale resolution have been considered , 2.5, 5, and 10 [lu]. In addition, the numerical dissolution reduces if the concentration of the dispersed phase is increased. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2618–2633, 2015  相似文献   

16.
The effects of the continuous and dispersed phase velocity and particle size on the axial dispersion of the continuous phase have been determined in two (liquid-liquid) and three (liquid-liquid-solid) phase fluidized beds. In a cocurrent liquid-liquid flow system, the axial dispersion coefficient increases with both the dispersed and continuous phase velocities. In three phase fluidized beds, the coefficient increases with dispersed phase velocity but it decreases with the particle size. Also the coefficient exhibits a maximum value with an increase in the continuous phase velocity at the lower dispersed phase velocities, but it increases with the continuous phase velocity at higher dispersed phase velocities. The axial dispersion coefficients in terms of Peclet number have been correlated in terms of the ratio of fluid velocities and the ratio of the particle size to column diameter, based on the isotropic turbulence theory.  相似文献   

17.
Particle fluctuations and dispersion were investigated in a three-phase (gas–liquid–solid) fluidized bed with an inside diameter of 0.102 m and height of 2.5 m. Effects of gas and liquid velocities, particle size (0.5–3.0 mm), viscosity (1.0–38×10−3 Pa s) and surface tension (52–72×10−3 N/m) of continuous liquid media on the fluctuating frequency and dispersion coefficient of fluidized particles were examined, by adopting the relaxation method base on the stochastic model. The fluctuations and dispersion of fluidized solid particles were successfully analyzed by means of the pressure drop variation with time, which was chosen as a state variable, based on the stochastic model. The fluctuating frequency and dispersion coefficient of particles increased with increasing gas velocity, due to the increase of bubbling phenomena and bed porosity in which particles could move, fluctuate and travel. The frequency and dispersion coefficient of particles showed local maximum values with a variation of liquid velocity. The two values of fluctuating frequency and dispersion coefficient of particles increased with increase in particle size, but decreased with increase in liquid viscosity due to the restricted movement and motion of particles in the viscous liquid medium. Both fluctuating frequency and dispersion coefficient of particles increased with decrease in surface tension of liquid phase, due to the increase of bubbling phenomena with decrease in σL. The values of obtained particle dispersion coefficient were well correlated in terms of dimensionless groups as well as operating variables.  相似文献   

18.
Secondary undesired reactions in ebullated bed resid hydroprocessors can generate an additional dispersed liquid phase, referred as mesophase, which is denser and more viscous than the continuous liquid phase and affects the operation and transport phenomena of the fluidized bed. This study investigates the effect of a dispersed immiscible liquid phase on the overall phase holdups, bubble properties, and fluidization behavior in a bubble column and ebullated bed. The experimental system consisted of biodiesel as the continuous liquid phase, glycerol as the dispersed liquid phase, 1.3 mm diameter glass beads, and nitrogen. The addition of dispersed glycerol reduced the gas holdups in the bubble column for the studied gas and liquid superficial velocities. Dynamic gas disengagement profiles reveal a rise in the large bubble population and reductions to the small and micro bubble holdups when increasing the glycerol concentration. Liquid–liquid–solid bed expansions at various liquid flowrates confirm particle agglomeration in the presence of a more viscous dispersed liquid phase. Overall phase holdups in a gas–liquid–liquid–solid ebullated bed were obtained while varying the gas and liquid flowrates as well as the glycerol concentration. A coalesced bubble flow regime was observed in the bed region without glycerol whereas the addition of glycerol resulted in the dispersed bubble flow regime due to particle clustering and a greater apparent particle size. The resulting bubble flow regime increased the bed and freeboard region gas holdups due to enhanced bubble break-up. Observations of the fluidized bed behavior following the addition of the dispersed glycerol are also discussed.  相似文献   

19.
针对含内构件的循环流化床,以石英砂为物料,使用动态压力传感器测量了含内构件的流化床中气固两相流的动态压力,分析了床内的瞬时压力特性. 结果表明,在进出口总压降中,文丘里压降最大,占主床压降的60%以上. 表观气速和固体颗粒循环流率共同影响循环流化床内的压力特性. 压力瞬时波动功率谱分析表明,压力波动对应一个主频,表观气速越小、颗粒循环流率越大时,压力波动越大,且循环流化床底部压力波动比上部大. 加入内构件能有效引导气流,使流动更均匀.  相似文献   

20.
An experimental study of three‐phase dispersed flow in a horizontal pipe has been carried out. The pressure drop over the pipe strongly increases with increasing bubble and drop volume fraction. Because of the presence of drops the transition from dispersed bubble flow to elongated bubble flow occurs at a lower gas volume fraction. The gas bubbles have no significant influence on the phase inversion process. However, phase inversion has a strong effect on the gas bubbles. Just before inversion large bubbles are present and the flow pattern is elongated bubble flow. During the inversion process the bubbles break‐up quickly and as the dispersed drop volume fraction after inversion is much lower than before inversion, a dispersed bubble flow is present after inversion. (When inversion is postponed to high dispersed phase fractions, the volume fraction of the dispersed phase can be as high as 0.9 before inversion and as low as 0.1 after inversion.) © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号