首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nanocomposite CeO2/Y2O3 partially stabilized zirconia (Ce‐PSZ/Y‐PSZ)‐toughened alumina was prepared by wet chemical simultaneous coprecipitation process. The thermal stability of phases and morphology of powders were characterized by TG‐DTA, FTIR, and FESEM. The microstructure, stabilization of phases and compositional analysis with different mol% CeO2/Y2O3‐doped zirconia in alumina are characterized by FESEM, XRD, and EDAX spectra. Significant improvement in fracture toughness and flexural strength has been observed in 10 vol% of partially stabilized zirconia (2.5 mol% Y2O3 in ZrO2/9 mol% CeO2 in ZrO2)‐toughened alumina, which is suitable for high‐speed machining applications.  相似文献   

2.
Better understanding of the effect of multimode‐microwave sintering of zirconia‐toughened alumina (ZTA) was investigated. A comparative dilatometric analysis was conducted between conventional and microwave heating processes, to clarify the influence of zirconia on the densification of ZTA under electromagnetic field. The thermal gradient on sample measurements indicates the change to the microwave volumetric heating is improved by zirconia which adsorbs microwave energy better, thus acting as a susceptor. The most beneficial effect on microstructure, toughness, and hardness were observed at the optimal zirconia content of 10 vol%. The results with both microwave and conventional sintering illustrate the strengthening effect on the composite by zirconia. Of special interest, multimode microwave sintering creates a finer homogeneous microstructure, with resulting hardness and toughening comparable to those obtained for conventional sintering, as well as improved densification, and at lower cost.  相似文献   

3.
Advances in the Grinding Efficiency of Sintered Alumina Abrasives   总被引:1,自引:0,他引:1  
The study relates the grinding power of different grades of sintered alumina abrasives to their microstructures and to basic mechanical properties in comparison with conventionally fused electrocorundum and with an electrofused alumina/ zirconia eutectic. Contrary to the traditional approach of the Battelle test, the fracture toughness K I c of individual grains is measured by a quantitative indentation analysis. Compared with fused corundum, sintered alumina grits exhibit an increased toughness and grinding efficiency, but the further increase of K I c in the eutectic does not improve the grinding performance. The key parameter for grinding is the inherent hardness of the abrasive. The elimination of flaws by a new approach results in a strong increase in the grinding power of sintered alumina abrasives.  相似文献   

4.
Zirconia toughened alumina (ZTA) materials are applied for cutting tools, wear parts and in biomedical applications. Due to the constraint of the rigid alumina matrix, ZTA materials with up to 10 vol% zirconia addition (AZ10) do not require addition of stabilizer oxides. AZ10 materials based on submicron sized alumina and four different submicron to nanoscale zirconia powders were manufactured by hot pressing at temperatures between 1475?1600 °C. Results show that the powder choice has a strong influence on mechanical properties, evolution of microstructure and phase composition. Best results with strength up to 850 MPa, fracture toughness values of 8.5 MPa√m and invulnerability to overfiring were obtained with zirconia powders showing the coarsest yet most homogeneous primary particle size and a low degree of agglomeration. Ultrafine but hard agglomerated powders lead to materials with extremely inhomogeneous microstructure and inferior properties.  相似文献   

5.
Advanced ceramic composite materials that exhibit high strength and toughness with good thermal shock resistance are needed for emerging high-temperature engineering applications. A recently developed in situ reinforced barium aluminosilicate glass-ceramic shows promise of meeting many of the requirements for these types of applications with the added benefit of low-cost fabrication through densification by pressureless sintering. The material is toughened through in situ growth of rodlike β-Si3N4 grains resulting from the α–β silicon nitride phase transformation. Microstructural development and material properties for temperatures up to 1400°C are discussed. When compared to monolithic barium aluminosilicate, barium aluminosilicate reinforced with 70% by volume of Si3N4 shows a significant increase in flexural strength (from 80 to 565 MPa) and fracture toughness (from 1.8 to 5.74 MPa·m1/2) with a high resistance to thermal shock.  相似文献   

6.
The 1.5- to 3-mol%-Y2O3-stabilized tetragonal ZrO2 (Y-TZP) and Al2O3/Y-TZP nanocomposite ceramics with 1 to 5 wt% of alumina were produced by a colloidal technique and low-temperature sintering. The influence of the ceramic processing conditions, resulting density, microstructure, and the alumina content on the hardness and toughness were determined. The densification of the zirconia (Y-TZP) ceramic at low temperatures was possible only when a highly uniform packing of the nanoaggregates was achieved in the green compacts. The bulk nanostructured 3-mol%-yttria-stabilized zirconia ceramic with an average grain size of 112 nm was shown to reach a hardness of 12.2 GPa and a fracture toughness of 9.3 MPa·m1/2. The addition of alumina allowed the sintering process to be intensified. A nanograined bulk alumina/zirconia composite ceramic with an average grain size of 94 nm was obtained, and the hardness increased to 16.2 GPa. Nanograined tetragonal zirconia ceramics with a reduced yttria-stabilizer content were shown to reach fracture toughnesses between 12.6–14.8 MPa·m1/2 (2Y-TZP) and 11.9–13.9 MPa·m1/2 (1.5Y-TZP).  相似文献   

7.
Two differently prepared series of zirconia-yttria electrolytes doped with 5–50 wt% of Al2O3 have been investigated. Bending strength, thermal shock resistance and ionic conductivity of the electrolytes have been measured. There was limited agreement between experimental and calculated (percolation theory) values for the electric properties. The 50% alumina samples exhibited slightly lower conductivity than the pure zirconia electrolyte in both series. It was found that alumina addition causes an increase in Young's modulus and thermal shock resistance, and results in better homogeneity of the microstructure.  相似文献   

8.
Ceria-doped tetragonal zirconia (Ce-TZP)/alumina (Al2O3) composites were fabricated by sintering at 1450° to 1600°C in air, followed by hot isostatic pressing (postsintering hot isostatic pressing) at 1450°C and 100 MPa in an 80 vol% Ar–20 vol% O2 gas atmosphere. Dispersion of Al2O3 particles into Ce-TZP was useful in increasing the relative density and suppressing the grain growth of Ce-TZP before hot isostatic pressing, but improvement of the fracture strength and fracture toughness was limited. Postsintering hot isostatic pressing was useful to densify Ce-TZP/Al2O3 composites without grain growth and to improve the fracture strength and thermal shock resistance.  相似文献   

9.
《Ceramics International》2021,47(21):29881-29887
Alumina and zirconia toughened alumina foams were fabricated through a thermo-foaming method using varying amounts of powder to sucrose weight ratio. All the fabricated foams were characterized for their compressive strength, bending strength, and fracture toughness under static loading conditions. The compressive strength increases with an increase in a weight ratio from 0.4 to 1.2. The maximum compressive strength values were found to be 1.9 MPa, and 1.8 MPa for alumina and zirconia toughened alumina foams, respectively. Further increase in powder to sucrose weight ratio led to a decrease in the compressive strength due to the partial collapse of the cell walls during the foaming process. The 3-point bend test results revealed an improvement of bending strength and fracture toughness values of zirconia toughened alumina foams compared to alumina foam, which can be attributed to the transformation toughening mechanism.  相似文献   

10.
Partially stabilized zirconia (PSZ) ceramics in the system CaO-ZrO2 were characterized. The microstructure, as revealed by optical microscopy, consisted of grains of pure ZrO2 distributed in a matrix of fully stabilized material. Electron microscopy showed that the matrix grains have a complex substructure of 1000-Å domains of cubic and monoclinic ZrO2. The grains appeared to fit Ubbelohde's concept of a hybrid single crystal. Evidence obtained indicated that the substructure provides an effective stress-relieving mechanism during thermal shock. It is proposed that initiation of phase inversion in pure ZrO2 domains, even at subtransition temperatures (by thermal stresses), creates an extremely large microcrack density. On the basis of Hasselman's thermal-shock criterion, only quasi-static crack propagation occurs during thermal shock of PSZ; evidence is presented to support this concept.  相似文献   

11.
It is demonstrated that 0.1 wt% of multi-walled carbon nanotubes (MWCNTs) or single-walled carbon nanotubes (SWCNTs) added to zirconia toughened alumina (ZTA) composites is enough to obtain high hardness and fracture toughness at indentation loads of 1, 5, and 10 kg. ZTA composites with 0.01 and 0.1 wt% of MWCNTs or SWCNTs were densified by spark plasma sintering (SPS) at 1520 °C resulting in a higher hardness and comparable fracture toughness to the ZTA matrix material. The observed toughening mechanisms include crack deflection, pullout of CNTs as well as bridged cracks leading to improved fracture toughness without evidence of transformation toughening of the ZrO2 phase. Scanning electron microscopy showed that MWCNTs rupture by a sword-in-sheath mechanism in the tensile direction contributing to an additional increase in fracture toughness.  相似文献   

12.
This paper reports the results of microwave sintering (without post-sintering annealing) on the microstructure, phase assemblage, and properties of 8 mol% (PSZ—partially stabilized zirconia), and 16 mol% (FSZ—fully stabilized zirconia) MgO-alloyed zirconia. For the PSZ samples sintered at 1585°C, a maximum densification of ∼98%ρth, along with a hardness of ∼10.6 GPa and a fracture toughness of ∼6.8 MPa·m1/2, was obtained. The results of tribological experiments on some selected samples revealed that a good combination of a lower coefficient of friction of 0.35 and a wear rate of 10−7 mm3/N m can be obtained with the optimally sintered Mg-PSZ.  相似文献   

13.
Zirconia toughened alumina (ZTA) nanocomposites are attractive structural materials which combine the high hardness and Young's modulus of the alumina matrix with an additional toughening effect by the zirconia dispersion.In this study two approaches to prepare ZTA are compared. For the first approach, an ultrafine alumina powder was coated with 5 vol% zirconia by a wet chemical method. For the second one, the reference material was prepared by intensively mixing and milling the same alumina with nanoscale zirconia powder. Samples were consolidated at 1350–1600 °C by hot pressing and their mechanical properties, microstructure and transformation behavior were compared. Toughness increments derived from different toughening mechanisms are also briefly discussed. Besides better sinterability, the mixed material exhibited a finer grain size of both matrix and dispersion and thus higher hardness and strength. The alumina matrix was under compressive hydrostatic residual cooling stress, whereas zirconia was under tensile one. The coated material, however, showed higher transformability, deeper transformation zones and thus higher fracture toughness. In addition, it contained more monoclinic zirconia so the matrix was under tension.  相似文献   

14.
Nanostructured alumina—20 vol% 3-yttria-stabilized zirconia (3YSZ) powder composites were synthesized by the wet-milling technique. The starting materials were a mixture of alumina micropowder and 3YSZ nanopowders. The mixtures were optimized for good sintering behaviors, high hardness, and toughness. Nano-crystalline grains were obtained after milling for 24h. The nano-structured powders were then processed to full density at different temperatures by high-frequency induction heat sintering. Effects of sintering temperature on the hardness, toughness, and microstructure properties have been studied. Al2O3–3YSZ composites with higher hardness, toughness, and smaller grain size have successfully been developed at relatively low temperatures by this technique.  相似文献   

15.
WC–Co composites are widely used as cutting or drilling tools because of their high hardness, strength, and fracture toughness. The working temperature is generally in the range of 300° to 700°C, so thermal shock fracture of WC–Co can occur if the parts are suddenly cooled. In this study, changes in fracture strength and fracture toughness after thermal shock were observed.  相似文献   

16.
The possibility of developing fine-grained (∼0.5–3 μm) and dense (≥0.98ρth) alumina (90 vol%)–aluminum titanate (10 vol%) composites with improved thermal shock resistance and maintained strength is investigated. One alumina material and one composite with similar microstructures (porosity and grain-size distribution) were fabricated to investigate the effect of Al2TiO5 on thermal shock behavior. The size of the Al2TiO5 particles was kept under 2.2 μm to avoid spontaneous microcracking. The mechanical and thermal properties of the materials involved in their response to thermal shock and the results for the evolution of indentation cracks of equal initial crack length with increasing Δ T in samples quenched in glycerine are described. The combination of thermal and mechanical properties—thermal conductivity, thermal expansion coefficient, Young's modulus, and toughness—improve the thermal shock resistance of the alumina–aluminum titanate composite in terms of critical temperature increment (>30%). The suitable structural properties of alumina—hardness and strength—are maintained.  相似文献   

17.
Graphene oxide and zirconia powders were mixed using a colloidal coating route. In situ reduced graphene oxide‐toughened zirconia ceramics were prepared by spark plasma sintering. Their microstructure, mechanical properties, and toughening mechanisms were investigated. The results show that graphene oxide can be easily reduced in situ during sintering and that it disperses homogeneously within the zirconia substrate. Compared with the toughness of 3 mol.% yttria‐stabilized zirconia, the fracture toughness of in situ reduced graphene oxide‐toughened zirconia increased by up to 175% (from ~6.07 to ~10.64 MPa·m1/2) at 0.09 wt.% graphene oxide with a small increase in hardness. The improvement is more significant than that of prereduced graphene oxide‐toughened cases, and it is associated with the formation of a C‐O‐Zr bond at the interface in addition to conventional toughening mechanisms.  相似文献   

18.
Perovskite-type SrZrO3 was investigated as an alternative to yttria-stabilized zirconia (YSZ) material for thermal barrier coating (TBC) applications. Three phase transformations (orthorhombic↔pseudo-tetragonal↔tetragonal↔cubic) were found only by heat capacity measurement, whereas the phase transformation from orthorhombic to pseudo-tetragonal was found in thermal expansion measurements. The thermal expansion coefficients (TECs) of SrZrO3 coatings were at least 4.5% larger than YSZ coatings up to 1200°C. Mechanical properties (Young's modulus, hardness, and fracture toughness) of dense SrZrO3 showed lower Young's modulus, hardness, and comparable fracture toughness with respect to YSZ. The "steady-state" sintering rate of a SrZrO3 coating at 1200°C was 1.04 × 10−9 s−1, which was less than half that of YSZ coating at 1200°C. Plasma-sprayed coatings were produced and characterized. Thermal cycling with a gas burner showed that at operating temperatures ∼1250°C the cycling lifetime of SrZrO3/YSZ double-layer coating (DLC) was more than twice as long as SrZrO3 coating and comparable to YSZ coating. However, at operating temperatures >1300°C, the cycling lifetime of SrZrO3/YSZ DLC was comparable to the optimized YSZ coating, indicating SrZrO3 might be a promising material for TBC applications at higher temperatures compared with YSZ.  相似文献   

19.
水泥回转窑用含ZrO2耐火材料   总被引:1,自引:1,他引:1  
徐延庆  叶国田 《耐火材料》2003,37(2):105-107
含ZrO2耐火材料在水泥窑上的应用不断增加,水泥窑用含ZrO2耐火材料包括含锆白云石砖、含锆镁砖、含锆镁尖晶石砖、含锆高铝砖等.本文从材料的抗化学侵蚀性、热震稳定性、导热性和力学性能等方面讨论了ZrO2的引入对耐火材料使用性能的影响.  相似文献   

20.
Dynamic consolidation techniques were employed to investigate the retention of tetragonal zirconia and degree of consolidation in alumina/zirconia powder compacts. Heating the specimens prior to explosive shock compaction increased the tetragonal-phase retention significantly. Low shock pressures yielded no macrocracking, although final densities were low (60% to 70% of the theoretical density). Heat treatment following dynamic consolidation enhanced the retention of the tetragonal zirconia polymorph regardless of the shock pressure employed. Compact densities were increased to over 90% of theoretical at relatively low sintering temperatures (1300°C). Hardness, toughness, and Young's modulus of the compacts were comparable to those achieved in composites that were synthesized using more conventional techniques. Dynamic compaction offers an alternative method for the fabrication of zirconia-toughened alumina ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号