首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Angiogenesis plays a key role in the wound healing process, involving the migration, growth, and differentiation of endothelial cells. Angiogenesis is controlled by a strict balance of different factors, and among these, the angiogenin protein plays a relevant role. Angiogenin is a secreted protein member of the ribonuclease superfamily that is taken up by cells and translocated to the nucleus when the process of blood vessel formation has to be promoted. However, the chemical signaling that activates the protein, normally present in the plasma, and the transport pathways through which the protein enters the cell are still largely unclear. Copper is also an angiogenic factor that regulates angiogenin expression and participates in the activation of common signaling pathways. The interaction between angiogenin and copper could be a relevant mechanism in regulating the formation of new blood vessel pathways and paving the way to the development of new drugs for chronic non-healing wounds.  相似文献   

2.
Angiogenesis is vital for tumour formation, development and metastasis. Recent reports show that carbon nanomaterials inhibit various angiogenic signalling pathways and, therefore, can be potentially used in anti-angiogenic therapy. In the present study, we compared the effect of different carbon nanomaterials on blood vessel development. Diamond nanoparticles, graphite nanoparticles, graphene nanosheets, multi-wall nanotubes and C60 fullerenes were evaluated for their angiogenic activities using the in ovo chick embryo chorioallantoic membrane model. Diamond nanoparticles and multi-wall nanotubes showed the greatest anti-angiogenic properties. Interestingly, fullerene exhibited the opposite effect, increasing blood vessel development, while graphite nanoparticles and graphene had no effect. Subsequently, protein levels of pro-angiogenic growth factor receptors were analysed, showing that diamond nanoparticles decreased the expression of vascular endothelial growth factor receptor. These results provide new insights into the biological activity of carbon nanomaterials and emphasise the potential use of multi-wall nanotubes and diamond nanoparticles in anti-angiogenic tumour therapy.  相似文献   

3.
The vascular endothelium is the interface in the cardiovascular system between the blood vessel wall and the flowing blood. As such, these cells are exposed to both shear stress and circumferential stretch. Though a lot is known about the regulation of gene expression by flow in mature vascular networks, very little is known in developing vessels. Most vascular networks in the adult are homeostatic, exhibiting very low rates of endothelial cell replication and turnover. In disease states such as cancer or macular degeneration, the vascular system is able to recapitulate embryonic growth and reinduce blood vessel growth. The vasculature that develops is similar to the embryonic vasculature, and so many have used knowledge of embryonic development to interpret pathological blood vessel growth. It was believed until recently that the embryonic vasculature was not sensitive to flow. We recently showed that shear stress is necessary for proper vascular development. We therefore review the role of blood flow and mechanical forces in vascular development. We examine the pattern and magnitude of flow present in primitive vascular networks as well as exploring gene regulation by shear stress in both in vitro and in vivo embryonic systems.  相似文献   

4.
One of the most important challenges facing researchers in the field of regenerative medicine is to develop methods to introduce vascular networks into bioengineered tissues. Although cell scaffolds that slowly release angiogenic factors can promote post-transplantation angiogenesis, they cannot be used to construct thick tissues because of the time required for sufficient vascular network formation. Recently, the co-culture of graft tissue with vascular cells before transplantation has attracted attention as a way of promoting capillary angiogenesis. Although the co-cultured vascular cells can directly contribute to blood vessel formation within the tissue, a key objective that needs to be met is the construction of a continuous circulatory structure. Previously described strategies to reconstruct blood vessels include the culture of endothelial cells in a scaffold that contains microchannels or within the original vascular framework after decellularization of an entire organ. The technique, as developed by authors, involves the progressive stacking of three-layered cell sheets onto a vascular bed to induce the formation of a capillary network within the cell sheets. This approach enables the construction of thick, functional tissue of high cell density that can be transplanted by anastomosing its artery and vein (provided by the vascular bed) with host blood vessels.  相似文献   

5.
The epidermal growth factor receptor (EGFR) family and its ligands serve as a switchboard for the regulation of multiple cellular processes. While it is clear that EGFR activity is essential for normal cardiac development, its function in the vasculature and its role in cardiovascular disease are only beginning to be elucidated. In the blood vessel, endothelial cells and smooth muscle cells are both a source and a target of EGF-like ligands. Activation of EGFR has been implicated in blood pressure regulation, endothelial dysfunction, neointimal hyperplasia, atherogenesis, and cardiac remodeling. Furthermore, increased circulating EGF-like ligands may mediate accelerated vascular disease associated with chronic inflammation. Although EGFR inhibitors are currently being used clinically for the treatment of cancer, additional studies are necessary to determine whether abrogation of EGFR signaling is a potential strategy for the treatment of cardiovascular disease.  相似文献   

6.
Resistin is a novel hormone that is secreted by human adipocytes and mononuclear cells and is associated with obesity, insulin resistance and inflammation. Recently, resistin has been postulated to play a role in angiogenesis. Here, we investigated the hypothesis that resistin regulates ovary carcinoma production of vascular endothelial growth factor (VEGF) and the angiogenic processes. We found that in human ovarian epithelial carcinoma cells (HO-8910), resistin (10–150 ng/mL) enhanced both VEGF protein and mRNA expression in a time- and concentration-dependent manner, as well as promoter activity. Furthermore, resistin enhanced DNA-binding activity of Sp1 with VEGF promoter in a PI3K/Akt-dependent manner. PI3K/Akt activated by resistin led to increasing interaction with Sp1, triggering a progressive phosphorylation of Sp1 on Thr453 and Thr739, resulting in the upregulation of VEGF expression. In an in vitro angiogenesis system for endothelial cells (EA.hy926) co-cultured with HO-8910 cells, we observed that the addition of resistin stimulated endothelial cell tube formation, which could be abolished by VEGF neutralizing antibody. Our findings suggest that the PI3K/Akt-Sp1 pathway is involved in resistin-induced VEGF expression in HO-8910 cells and indicates that antiangiogenesis therapy may be beneficial treatment against ovarian epithelial carcinoma, especially in obese patients.  相似文献   

7.
The importance of lymphatic vessels in a myriad of human diseases is rapidly gaining recognition; lymphatic vessel dysfunction is a feature of disorders including congenital lymphatic anomalies, primary lymphoedema and obesity, while improved lymphatic vessel function increases the efficacy of immunotherapy for cancer and neurological disease and promotes cardiac repair following myocardial infarction. Understanding how the growth and function of lymphatic vessels is precisely regulated therefore stands to inform the development of novel therapeutics applicable to a wide range of human diseases. Lymphatic vascular development is initiated during embryogenesis following establishment of the major blood vessels and the onset of blood flow. Lymphatic endothelial progenitor cells arise from a combination of venous and non-venous sources to generate the initial lymphatic vascular structures in the vertebrate embryo, which are then further ramified and remodelled to elaborate an extensive lymphatic vascular network. Signalling mediated via vascular endothelial growth factor (VEGF) family members and vascular endothelial growth factor receptor (VEGFR) tyrosine kinases is crucial for development of both the blood and lymphatic vascular networks, though distinct components are utilised to different degrees in each vascular compartment. Although much is known about the regulation of VEGFA/VEGFR2 signalling in the blood vasculature, less is understood regarding the mechanisms by which VEGFC/VEGFD/VEGFR3 signalling is regulated during lymphatic vascular development. This review will focus on recent advances in our understanding of the cellular and molecular mechanisms regulating VEGFA-, VEGFC- and VEGFD-mediated signalling via VEGFRs which are important for driving the construction of lymphatic vessels during development and disease.  相似文献   

8.
Glioblastoma (GBM) is the most aggressive and common primary tumor of the central nervous system. It is characterized by having an infiltrating growth and by the presence of an excessive and aberrant vasculature. Some of the mechanisms that promote this neovascularization are angiogenesis and the transdifferentiation of tumor cells into endothelial cells or pericytes. In all these processes, the release of extracellular microvesicles by tumor cells plays an important role. Tumor cell-derived extracellular microvesicles contain pro-angiogenic molecules such as VEGF, which promote the formation of blood vessels and the recruitment of pericytes that reinforce these structures. The present study summarizes and discusses recent data from different investigations suggesting that Netrin-1, a highly versatile protein recently postulated as a non-canonical angiogenic ligand, could participate in the promotion of neovascularization processes in GBM. The relevance of determining the angiogenic signaling pathways associated with the interaction of Netrin-1 with its receptors is posed. Furthermore, we speculate that this molecule could form part of the microvesicles that favor abnormal tumor vasculature. Based on the studies presented, this review proposes Netrin-1 as a novel biomarker for GBM progression and vascularization.  相似文献   

9.
Endothelial cells (ECs) that line the lumen of blood vessels are important players in blood vessel formation, and EC migration is a key component of the angiogenic process. Thus, identification of genes that are specifically or preferentially expressed in vascular ECs and in-depth understanding of their biological functions may lead to discovery of new therapeutic targets. We have previously reported molecular characterization of human endothelial cell-specific molecule 2 (ECSM2)/endothelial cell-specific chemotaxis regulator (ECSCR). In the present study, we cloned two mouse full-length cDNAs by RT-PCR, which encode two putative ECSCR isoform precursors with considerable homology to the human ECSCR. Nucleotide sequence and exon-intron junction analyses suggested that they are alternative splicing variants (ECSCR isoform-1 and -2), differing from each other in the first and second exons. Quantitative RT-PCR results revealed that isoform-2 is the predominant form, which was most abundant in heart, lung, and muscles, and moderately abundant in uterus and testis. In contrast, the expression of isoform-1 seemed to be more enriched in testis. To further explore their potential cellular functions, we expressed GFP- and FLAG-tagged ECSCR isoforms, respectively, in an ECSCR deficient cell line (HEK293). Interestingly, the actual sizes of either ECSCR-GFP or -FLAG fusion proteins detected by immunoblotting are much larger than their predicted sizes, suggesting that both isoforms are glycoproteins. Fluorescence microscopy revealed that both ECSCR isoforms are localized at the cell surface, which is consistent with the structural prediction. Finally, we performed cell migration assays using mouse endothelial MS1 cells overexpressing GFP alone, isoform-1-GFP, and isoform-2-GFP, respectively. Our results showed that both isoforms significantly inhibited vascular epidermal growth factor (VEGF)-induced cell migration. Taken together, we have provided several lines of experimental evidence that two mouse ECSCR splicing variants/isoform precursors exist. They are differentially expressed in a variety of tissue types and likely involved in modulation of vascular EC migration. We have also defined the gene structure of mouse ECSCR using bioinformatics tools, which provides new information towards a better understanding of alternative splicing of ECSCR.  相似文献   

10.
Chitinase 3-like 1 (CHI3L1) is an enzymatically inactive mammalian chitinase that is associated with tumor inflammation. Previous research indicated that CHI3L1 is able to interact with different extracellular matrix components, such as heparan sulfate. In the present work, we investigated whether the interaction of CHI3L1 with the extracellular matrix of melanoma cells can trigger an inflammatory activation of endothelial cells. The analysis of the melanoma cell secretome indicated that CHI3L1 increases the abundance of various cytokines, such as CC-chemokine ligand 2 (CCL2), and growth factors, such as vascular endothelial growth factor A (VEGF-A). Using a solid-phase binding assay, we found that heparan sulfate-bound VEGF-A and CCL2 were displaced by recombinant CHI3L1 in a dose-dependent manner. Microfluidic experiments indicated that the CHI3L1 altered melanoma cell secretome promoted immune cell recruitment to the vascular endothelium. In line with the elevated VEGF-A levels, CHI3L1 was also able to promote angiogenesis through the release of extracellular matrix-bound pro-angiogenic factors. In conclusion, we showed that CHI3L1 is able to affect the tumor cell secretome, which in turn can regulate immune cell recruitment and blood vessel formation. Accordingly, our data suggest that the molecular targeting of CHI3L1 in the course of cancer immunotherapies can tune patients’ response and antitumoral inflammation.  相似文献   

11.
The Rho family of small GTPases (Rho GTPases) act as molecular switches that transduce extrinsic stimuli into cytoskeletal rearrangements. In vascular endothelial cells (ECs), Cdc42, Rac1, and RhoA control cell migration and cell–cell junctions downstream of angiogenic and inflammatory cytokines, thereby regulating vascular formation and permeability. While these Rho GTPases are broadly expressed in various types of cells, RhoJ is enriched in angiogenic ECs. Semaphorin 3E (Sema3E) releases RhoJ from the intracellular domain of PlexinD1, by which RhoJ induces actin depolymerization through competition with Cdc42 for their common effector proteins. RhoJ further mediates the Sema3E-induced association of PlexinD1 with vascular endothelial growth factor receptor (VEGFR) 2 and the activation of p38. Upon stimulation with VEGF-A, RhoJ facilitates the formation of a holoreceptor complex comprising VEGFR2, PlexinD1, and neuropilin-1, leading to the prevention of VEGFR2 degradation and the maintenance of intracellular signal transduction. These pleiotropic roles of RhoJ are required for directional EC migration in retinal angiogenesis. This review highlights the latest insights regarding Rho GTPases in the field of vascular biology, as it will be informative to consider their potential as targets for the treatment of aberrant angiogenesis and hyperpermeability in retinal vascular diseases.  相似文献   

12.
Adiponectin and leptin are two abundant adipokines with different properties but both described such as potent factors regulating angiogenesis. AdipoRon is a small-molecule that, binding to AdipoRs receptors, acts as an adiponectin agonist. Here, we investigated the effects of AdipoRon and leptin on viability, migration and tube formation on a human in vitro model, the human umbilical vein endothelial cells (HUVEC) focusing on the expression of the main endothelial angiogenic factors: hypoxia-inducible factor 1-alpha (HIF-1α), C-X-C motif chemokine ligand 1 (CXCL1), vascular endothelial growth factor A (VEGF-A), matrix metallopeptidase 2 (MMP-2) and matrix metallopeptidase 9 (MMP-9). Treatments with VEGF-A were used as positive control. Our data revealed that, at 24 h treatment, proliferation of HUVEC endothelial cells was not influenced by AdipoRon or leptin administration; after 48 h longer exposure time, the viability was negatively influenced by AdipoRon while leptin treatment and the combination of AdipoRon+leptin produced no effects. In addition, AdipoRon induced a significant increase in complete tubular structures together with induction of cell migration while, on the contrary, leptin did not induce tube formation and inhibited cell migration; interestingly, the co-treatment with both AdipoRon and leptin determined a significant decrease of the tubular structures and cell migration indicating that leptin antagonizes AdipoRon effects. Finally, we found that the effects induced by AdipoRon administration are accompanied by an increase in the expression of CXCL1, VEGF-A, MMP-2 and MMP-9. In conclusion, our data sustain the active role of adiponectin and leptin in linking adipose tissue with the vascular endothelium encouraging the further deepening of the role of adipokines in new vessel’s formation, to candidate them as therapeutic targets.  相似文献   

13.
14.
15.
Increasing adipose tissue mass in obesity directly correlates with elevated circulating leptin levels. Leptin is an adipokine known to play a role in numerous biological processes including regulation of energy homeostasis, inflammation, vascular function and angiogenesis. While physiological concentrations of leptin may exhibit multiple beneficial effects, chronically elevated pathophysiological levels or hyperleptinemia, characteristic of obesity and diabetes, is a major risk factor for development of atherosclerosis. Hyperleptinemia results in a state of selective leptin resistance such that while beneficial metabolic effects of leptin are dampened, deleterious vascular effects of leptin are conserved attributing to vascular dysfunction. Leptin exerts potent proatherogenic effects on multiple vascular cell types including macrophages, endothelial cells and smooth muscle cells; these effects are mediated via an interaction of leptin with the long form of leptin receptor, abundantly expressed in atherosclerotic plaques. This review provides a summary of recent in vivo and in vitro studies that highlight a role of leptin in the pathogenesis of atherosclerotic complications associated with obesity and diabetes.  相似文献   

16.
Background: Chronic inflammation has been recognized in neoplastic disorders, including myeloproliferative neoplasm (MPN), as an important regulator of angiogenesis. Aims: We investigated the influence of vascular endothelial growth factor (VEGF) and pro-inflammatory interleukin-6 (IL-6) on the expression of angiogenic factors, as well as inflammation-related signaling in mononuclear cells (MNC) of patients with MPN and JAK2V617F positive human erythroleukemic (HEL) cells. Results: We found that IL-6 did not change the expression of angiogenic factors in the MNC of patients with MPN and HEL cells. However, IL-6 and the JAK1/2 inhibitor Ruxolitinib significantly increased angiogenic factors—endothelial nitric oxide synthase (eNOS), VEGF, and hypoxia-inducible factor-1 alpha (HIF-1α)—in patients with polycythemia vera (PV). Furthermore, VEGF significantly increased the expression of HIF-1α and eNOS genes, the latter inversely regulated by PI3K and mTOR signaling in the MNC of primary myelofibrosis (PMF). VEGF and inhibitors of inflammatory JAK1/2, PI3K, and mTOR signaling reduced the eNOS protein expression in HEL cells. VEGF also decreased the expression of eNOS and HIF-1α proteins in the MNC of PMF. In contrast, VEGF increased eNOS and HIF-1α protein expression in the MNC of patients with PV, which was mediated by the inflammatory signaling. VEGF increased the level of IL-6 immunopositive MNC of MPN. In summary, VEGF conversely regulated gene and protein expression of angiogenic factors in the MNC of PMF, while VEGF increased angiogenic factor expression in PV mediated by the inflammation-related signaling. Conclusion: The angiogenic VEGF induction of IL-6 supports chronic inflammation that, through positive feedback, further promotes angiogenesis with concomitant JAK1/2 inhibition.  相似文献   

17.
18.
Ovarian Cancer represents the most fatal type of gynecological malignancies. A number of processes are involved in the pathogenesis of ovarian cancer, especially within the tumor microenvironment. Angiogenesis represents a hallmark phenomenon in cancer, and it is responsible for tumor spread and metastasis in ovarian cancer, among other tumor types, as it leads to new blood vessel formation. In recent years angiogenesis has been given considerable attention in order to identify targets for developing effective anti-tumor therapies. Growth factors have been identified to play key roles in driving angiogenesis and, thus, the formation of new blood vessels that assist in “feeding” cancer. Such molecules include the vascular endothelial growth factor (VEGF), the platelet derived growth factor (PDGF), the fibroblast growth factor (FGF), and the angiopoietin/Tie2 receptor complex. These proteins are key players in complex molecular pathways within the tumor cell and they have been in the spotlight of the development of anti-angiogenic molecules that may act as stand-alone therapeutics, or in concert with standard treatment regimes such as chemotherapy. The pathways involved in angiogenesis and molecules that have been developed in order to combat angiogenesis are described in this paper.  相似文献   

19.
Chlamydia pneumoniae, an obligate intracellular pathogen, is known as a leading cause of respiratory tract infections and, in the last two decades, has been widely associated with atherosclerosis by seroepidemiological studies, and direct detection of the microorganism within atheroma. C. pneumoniae is presumed to play a role in atherosclerosis for its ability to disseminate via peripheral blood mononuclear cells, to replicate and persist within vascular cells, and for its pro-inflammatory and angiogenic effects. Once inside the vascular tissue, C. pneumoniae infection has been shown to induce the production of reactive oxygen species in all the cells involved in atherosclerotic process such as macrophages, platelets, endothelial cells, and vascular smooth muscle cells, leading to oxidative stress. The aim of this review is to summarize the data linking C. pneumoniae-induced oxidative stress to atherosclerotic lesion development.  相似文献   

20.
Control of endothelial leukocyte adhesion molecules by fatty acids   总被引:1,自引:0,他引:1  
Dietary balance of long-chain fatty acids (FA) may influence human susceptibility to pathological processes which involve the interaction of leukocytes with vascular endothelium, such as atherogenesis and inflammation. Such interaction is largely mediated by thede novo or increased expression of endothelial leukocyte adhesion molecules on vascular endothelial cells, able to tether and stably bind leukocytes onto the vessel wall, and by the production of leukocyte chemoattractants. Endothelial cells do not normally support high levels of leukocyte adhesion. They do so, however, when exposed to a number of stimuli, such as oxidized low density lipoprotein bacterial lipopolysaccharides, and inflammatory cytokines, which induce phenotypic changes generally referred to as “endothelial activation.” We compared various FA in their ability to modulate endothelial activation by cytokines. FA included linoleic, arachidonic, oleic, eicosapentaenoic and, docosahexaenoic acid (DHA) as representatives of the n-6, n-3 polyunsaturated FA and of the monounsaturated FA. The n-3 FA DHA, and, to a lesser extent, oleate, at nutritionally compatible concentrations, were able to reduce endothelial expression of Vascular Cell and Adhesion Molecule-1 (VCAM-1). In further studies, DHA dose- and time-dependently reduced also the expression of E-selectin, Intercellular Adhesion Molecule-1, interleukin (IL)-6 and IL-8, in response to IL-1, IL-4, tumornecrosis factor, or bacterial endotoxin. The magnitude of this effect paralleled its incorporation into cellular phospholipids. Also, coordinate with reduced surface adhesion molecule expression, DHA reduced the adhesion of human monocytes and of monocytic U937 cells to cytokine-stimulated endothelial cells. These effects were accompanied by a quantitatively consistent reduction in VCAM-1 mRNA, indicating a pretranslational control of adhesion molecule gene expression. These novel properties of FA as modulators of endothelial activation may help to explain the influence of dietary FA intake on atherogenesis and inflammation. A substantial part of the data presented in this paper has been previously published [Arterioscler. Thromb. 14, 1829–1836 (1994)], and are here reported with permission of the American Heart Association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号