首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myocardial infarction is a leading cause for morbidity and mortality worldwide. The only viable treatment for the ischemic insult is timely reperfusion, which further exacerbates myocardial injury. Maintaining mitochondrial function is crucial in preserving cardiomyocyte function in ischemia reperfusion (IR) injury. Poloxamer (P) 188 has been shown to improve cardiac IR injury by improving cellular and mitochondrial function. The aim of this study was to show if P188 postconditioning has direct protective effects on mitochondrial function in the heart. Langendorff prepared rat hearts were subjected to IR injury ex-vivo and reperfused for 10 min with 1 mM P188 vs. vehicle. Cardiac mitochondria were isolated with 1 mM P188 vs. 1 mM polyethylene glycol (PEG) vs. vehicle by differential centrifugation. Mitochondrial function was assessed by adenosine triphosphate synthesis, oxygen consumption, and calcium retention capacity. Mitochondrial function decreased significantly after ischemia and showed mild improvement with reperfusion. P188 did not improve mitochondrial function in the ex-vivo heart, and neither further P188 nor PEG induced direct mitochondrial protection after IR injury in this model.  相似文献   

2.
Previous studies have indicated that bone morphogenetic protein-7 (BMP-7) is neuroprotective against cerebral ischemia/reperfusion (IR) injury. The present study was undertaken to determine the molecular mechanisms involved in this effect. Adult male Wistar rats were subjected to 2 h of transient middle cerebral artery occlusion (MCAO), followed by 24 h of reperfusion. BMP-7 (10−4 g/kg) or vehicle was infused into rats at the onset of reperfusion via the tail vein. Neurological deficits, infarct volume, histopathological changes, oxidative stress-related biochemical parameters, neuronal apoptosis, and apoptosis-related proteins were assessed. BMP-7 significantly improved neurological and histological deficits, reduced the infarct volume, and decreased apoptotic cells after cerebral ischemia. BMP-7 also markedly enhanced the activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), and reduced the level of malondialdehyde (MDA) in IR rats. In addition, Western blot analysis indicated that BMP-7 prevented cytochrome c release, inhibited activation of caspase-3, caspase-9 and caspase-8. Our data suggested that BMP-7 has protective effects against cerebral IR injury in rats, and the neuroprotective effects may be attributed to attenuating oxidative stress and inhibiting neuronal apoptosis.  相似文献   

3.
Rho kinase (ROCK) is a well-known downstream effector of Rho and plays an important role in various physiopathological processes. In this study, we aim to investigate the correlation between ROCK and microvascular damage in rat brain subjected to middle cerebral artery occlusion (MCAO) and reperfusion, and to elucidate the mechanisms underlying the microvascular damage. ROCK and matrix metalloproteinase 9 (MMP9) mRNA levels were determined by real time quantitative PCR, Laminin was detected by immunofluorescence and Blood Brain Barrier (BBB) permeability was examined by Evans Blue (EB) in rat MCAO models. We observed similar patterns of changes in ROCK expression, brain EB content, and Laminin expression at different time points after brain ischemia. Statistical analysis further confirmed a significant linear correlation of ROCK expression with the onset of microvascular damage in brain. Furthermore, the ROCK inhibitor fasudil decreased brain EB content but increased Laminin expression. These results provide strong evidence that ROCK mediates microvascular damage. In addition, we found that fasudil could significantly inhibit MMP9 expression induced by ischemia. Thus, our findings suggest that ROCK promotes microvascular damage by upregulating MMP9 and reveal ROCK as a promising therapeutic target for stroke.  相似文献   

4.
Ischemic postconditioning refers to several transient reperfusion and ischemia cycles after an ischemic event and before a long duration of reperfusion. The procedure produces neuroprotective effects. The mechanisms underlying these neuroprotective effects are poorly understood. In this study, we found that most neurons in the CA1 region died after 10 minutes of ischemia and is followed by 72 hours of reperfusion. However, brain ischemic postconditioning (six cycles of 10 s/10 s reperfusion/re-occlusion) significantly reduced neuronal death. Significant up-regulation of Glutamate transporter-1 was found after 3, 6, 24, 72 hours of reperfusion. The present study showed that ischemic postconditioning decreases cell death and that upregulation of GLT-1 expression may play an important role on this effect.  相似文献   

5.
腺苷对缺血再灌注后心肌的保护作用   总被引:1,自引:0,他引:1  
目的研究腺苷对大鼠心肌细胞凋亡及核因子κB(NF-κB)表达的影响。方法制备对照组(C组)、缺血再灌注损伤组(I/R组)和缺血再灌注前腺苷治疗组(AD组)的大鼠模型。电镜、光镜下观察心肌结构变化,采用原位缺口末端标记法(TUNEL)检测心肌细胞凋亡,免疫组织化学方法检测心肌组织NF-κB表达。结果AD组大鼠心肌细胞凋亡数(2 645.0±326.0)及心肌组织中NF-κB的表达(32.21%±17.91%)明显低于I/R组(5 113.0±503.7和60.30%±10.36%),明显高于对照组(67.7±51.3和11.98%±3.65%)。结论腺苷具有明显降低大鼠缺血再灌注后心肌细胞凋亡的作用,可能与腺苷减轻缺血再灌注心肌组织过度表达NF-κB有关。  相似文献   

6.
The acute demise of stem cells following transplantation significantly compromises the efficacy of stem cell-based cell therapeutics for infarcted hearts. As the stem cells transplanted into the damaged heart are readily exposed to the hostile environment, it can be assumed that the acute death of the transplanted stem cells is also inflicted by the same environmental cues that caused massive death of the host cardiac cells. Pyroptosis, a highly inflammatory form of programmed cell death, has been added to the list of important cell death mechanisms in the damaged heart. However, unlike the well-established cell death mechanisms such as necrosis or apoptosis, the exact role and significance of pyroptosis in the acute death of transplanted stem cells have not been explored in depth. In the present study, we found that M1 macrophages mediate the pyroptosis in the ischemia/reperfusion (I/R) injured hearts and identified miRNA-762 as an important regulator of interleukin 1β production and subsequent pyroptosis. Delivery of exogenous miRNA-762 prior to transplantation significantly increased the post-transplant survival of stem cells and also significantly ameliorated cardiac fibrosis and heart functions following I/R injury. Our data strongly suggest that suppressing pyroptosis can be an effective adjuvant strategy to enhance the efficacy of stem cell-based therapeutics for diseased hearts.  相似文献   

7.
During visceral interventions, the transient clampage of supraceliac aorta causes ischemia/reperfusion (I/R) in kidneys, sometime resulting in acute renal failure; preclinical studies identified redox imbalance as the main driver of I/R injury. However, in humans, the metabolic/inflammatory responses seem to prevail on oxidative stress. We investigated myostatin (Mstn) and proprotein convertase subtilisin/kexin type 9 (PCSK9), proatherogenic mediators, during renal I/R. Compared to sham-operated animals, the kidneys of rats who had experienced ischemia (30 min) had higher Mstn and PCSK9 expression after 4 h of reperfusion. After 24 h, they displayed tubular necrosis, increased nitrotyrosine positivity, and nuclear peroxisome proliferator-activated receptor gamma coactivator-1alpha relocation, markers of oxidative stress and mitochondria imbalance. Mstn immunopositivity was increased in tubuli, while PCSK9 immunosignal was depleted; systemically, PCSK9 was higher in plasma from I/R rats. In HK-2 cells, both ischemia and reperfusion enhanced reactive oxygen species production and mitochondrial dysfunction. H2O2 upregulated Mstn and PCSK9 mRNA after 1 and 3.5 h, respectively. Accordingly, ischemia early induced Mstn and PCSK9 mRNA; during reperfusion Mstn was augmented and PCSK9 decreased. Mstn treatment early increased PCSK9 expression (within 8 h), to diminish over time; finally, Mstn silencing restrained ischemia-induced PCSK9. Our study demonstrates that renal I/R enhances Mstn and PCSK9 expression and that Mstn induces PCSK9, suggesting them as therapeutic targets for vascular protection during visceral surgery.  相似文献   

8.
Ischemia/reperfusion injury (IRI) occurs frequently during reperfusion of ischemic myocardium, and preconditioning has been regarded as one of the best strategies to prevent myocardial injury during the ischemia/reperfusion process. Our previous studies indicated that a small dose of sulfur dioxide (SO2) used as preconditioning exerts cardioprotection. However, the mechanisms underlying the cardioprotection remain unclear. The present study was designed to examine if the extracellular regulated protein kinases 1/2 (ERK1/2) signaling pathway mediated protection against cardiac dysfunction after SO2 preconditioning in isolated rat hearts subjected to ischemia/reperfusion (I/R). Langendorff heart perfusion was performed in vitro, where 56 male Wistar rats were randomly divided into seven groups: control group, 5 μmol/L SO2 group (S5), 2-(2-Amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059) + 5 μmol/L SO2 (PD98059 + S5) group, PD98059 group, I/R group, 5 μmol/L SO2 + I/R (S5 + I/R) group and PD98059 + 5 μmol/L SO2 + I/R (PD98059 + S5 + I/R) group. Cardiac function and myocardial phosphorylated ERK1/2 protein were measured. We found that I/R in isolated rat heart resulted in cardiac dysfunction with a significant increase in phosphorylated ERK1/2 protein. SO2 preconditioning markedly suppressed phosphorylated ERK1/2 protein and improved cardiac function in isolated rat heart with I/R (p < 0.05). However, pre-treatment with PD98059 could prevent the above effects of SO2 preconditioning. In conclusion, SO2 preconditioning protected against cardiac dysfunction in isolated rat heart subjected to I/R via suppression of the over-activation of the ERK1/2 signaling pathway.  相似文献   

9.
Achyranthes bidentata, a Chinese medicinal herb, is reported to be neuroprotective. However, its role in cardioprotection remains largely unknown. Our present study aimed to investigate the effects of Achyranthes bidentata polypeptides (ABPP) preconditioning on myocardial ischemia/reperfusion (MI/R) injury and to test the possible mechanisms. Rats were treated with ABPP (10 mg/kg/d, i.p.) or saline once daily for one week. Afterward, all the animals were subjected to 30 min of myocardial ischemia followed by 4 h of reperfusion. ABPP preconditioning for one week significantly improved cardiac function following MI/R. Meanwhile, ABPP reduced infarct size, plasma creatine kinase (CK)/lactate dehydrogenase (LDH) activities and myocardial apoptosis at the end of reperfusion in rat hearts. Moreover, ABPP preconditioning significantly inhibited superoxide generation, gp91phox expression, malonaldialdehyde formation and enhanced superoxide dismutase activity in I/R hearts. Furthermore, ABPP treatment inhibited PTEN expression and increased Akt phosphorylation in I/R rat heart. PI3K inhibitor wortmannin blocked Akt activation, and abolished ABPP-stimulated anti-oxidant effect and cardioprotection. Our study demonstrated for the first time that ABPP reduces oxidative stress and exerts cardioprotection against MI/R injury in rats. Inhibition of PTEN and activation of Akt may contribute to the anti-oxidant capacity and cardioprotection of ABPP.  相似文献   

10.
Transient potential receptor vanilloid 1 (TRPV1) channels, which are expressed on sensory neurons, elicit cardioprotective effects during ischemia reperfusion injury by stimulating the release of neuropeptides, namely calcitonin gene-related peptide (CGRP) and substance P (SP). Recent studies show that TRPV1 channels are also expressed on cardiomyocytes and can exacerbate air pollutant-induced apoptosis. However, whether these channels present on cardiomyocytes directly modulate cell death and survival pathways during hypoxia/reoxygenation (H/R) injury remains unclear. In the present study, we investigated the role of TRPV1 in H/R induced apoptosis of H9C2 cardiomyocytes. We demonstrated that TRPV1 was indeed expressed in H9C2 cells, and activated by H/R injury. Although neuropeptide release caused by TRPV1 activation on sensory neurons elicits a cardioprotective effect, we found that capsaicin (CAP; a TRPV1 agonist) treatment of H9C2 cells paradoxically enhanced the level of apoptosis by increasing intracellular calcium and mitochondrial superoxide levels, attenuating mitochondrial membrane potential, and inhibiting mitochondrial biogenesis (measured by the expression of ATP synthase β). In contrast, treatment of cells with capsazepine (CPZ; a TRPV1 antagonist) or TRPV1 siRNA attenuated H/R induced-apoptosis. Furthermore, CAP and CPZ treatment revealed a similar effect on cell viability and mitochondrial superoxide production in primary cardiomyocytes. Finally, using both CGRP8–37 (a CGRP receptor antagonist) and RP67580 (a SP receptor antagonist) to exclude the confounding effects of neuropeptides, we confirmed aforementioned detrimental effects as TRPV1−/− mouse hearts exhibited improved cardiac function during ischemia/reperfusion. In summary, direct activation of TRPV1 in myocytes exacerbates H/R-induced apoptosis, likely through calcium overload and associated mitochondrial dysfunction. Our study provides a novel understanding of the role of myocyte TRPV1 channels in ischemia/reperfusion injury that sharply contrasts with its known extracardiac neuronal effects.  相似文献   

11.
Receptor-interacting protein kinase 3 (RIP3) is a convergence point of multiple signalling pathways, including necroptosis, inflammation and oxidative stress; however, it is completely unknown whether it underlies acute myocardial ischemia/reperfusion (I/R) injury. Langendorff-perfused rat hearts subjected to 30 min ischemia followed by 10 min reperfusion exhibited compromised cardiac function which was not abrogated by pharmacological intervention of RIP3 inhibition. An immunoblotting analysis revealed that the detrimental effects of I/R were unlikely mediated by necroptotic cell death, since neither the canonical RIP3–MLKL pathway (mixed lineage kinase-like pseudokinase) nor the proposed non-canonical molecular axes involving CaMKIIδ–mPTP (calcium/calmodulin-dependent protein kinase IIδ–mitochondrial permeability transition pore), PGAM5–Drp1 (phosphoglycerate mutase 5–dynamin-related protein 1) and JNK–BNIP3 (c-Jun N-terminal kinase–BCL2-interacting protein 3) were activated. Similarly, we found no evidence of the involvement of NLRP3 inflammasome signalling (NOD-, LRR- and pyrin domain-containing protein 3) in such injury. RIP3 inhibition prevented the plasma membrane rupture and delayed mPTP opening which was associated with the modulation of xanthin oxidase (XO) and manganese superoxide dismutase (MnSOD). Taken together, this is the first study indicating that RIP3 regulates early reperfusion injury via oxidative stress- and mitochondrial activity-related effects, rather than cell loss due to necroptosis.  相似文献   

12.
The need for selective matrix metalloproteinase (MMP) inhibition is of interest because of the range of pathologies mediated by different MMP isoforms. The development of more selective MMP inhibitors (MMPi) may help to overcome some of the undesired side effects that have hindered the clinical success of these compounds. In an effort to devise new approaches to selective inhibitors, herein we describe several novel MMPi and show that their selectivity is dependent on the nature of the zinc-binding group (ZBG). This is in contrast to most current MMPi, which obtain isoform selectivity solely from the peptidomimetic backbone portion of the compound. In the present study, six different hydroxypyrone and hydroxypyridinone ZBGs were appended to a common biphenyl backbone and the inhibition efficiency of each inhibitor was determined in vitro (IC(50) values) against MMP-1, -2, -3, -7, -8, -9, -12, and -13. The results show that the selectivity profile of each inhibitor is different as a result of the various ZBGs. Computational modeling studies were used to explain some trends in the observed selectivity profiles. To assess the importance of the ZBG in a biological model, two of the semiselective, potent MMPi (and one control) were evaluated using an isolated perfused rat heart system. Hearts were subjected to ischemia reperfusion injury, and recovery of contractile function was examined. In this model, only one of the two MMPi showed significant and sustained heart recovery, demonstrating that the choice of ZBG can have a significant effect in a relevant pathophysiological endpoint.  相似文献   

13.
神经节苷脂对脑缺血/再灌注损伤的保护作用   总被引:1,自引:0,他引:1  
目的探讨神经节苷脂对脑缺血再灌注损伤的保护作用。方法采用Pulsinelli的四血管闭塞法 制作大鼠急性脑缺血/再灌注模型,利用高压液相色谱法观察脑缺血/再灌注期间谷氨酸和γ-氨基丁酸含量的变化, 通过图象分析仪测定神经元的面数密度及神经节苷脂对以上指标的影响。结果缺血后谷氨酸和γ-氨基丁酸含 量明显升高,再灌注后降低,神经节苷脂可降低谷氨酸含量,与盐水对照组相比差异显著(P<0.01),同时增加神经 元面数密度。结论神经节苷脂通过抑制谷氨酸释放,可减轻脑缺血再灌注期间脑组织损伤。  相似文献   

14.
15.
In the present work, we have studied whether cell death could be induced in cortical neurons from rats subjected to different period of O2 deprivation and low glucose (ODLG). This “in vitro” model is designed to emulate the penumbra area under ischemia. In these conditions, cortical neurons displayed loss of mitochondrial respiratory ability however, nor necrosis neither apoptosis occurred despite ROS production. The absence of cellular death could be a consequence of increased antioxidant responses such as superoxide dismutase-1 (SOD1) and GPX3. In addition, the levels of reduced glutathione were augmented and HIF-1/3α overexpressed. After long periods of ODLG (12–24 h) cortical neurons showed cellular and mitochondrial membrane alterations and did not recuperate cellular viability during reperfusion. This could mean that therapies directed toward prevention of cellular and mitochondrial membrane imbalance or cell death through mechanisms other than necrosis or apoptosis, like authophagy, may be a way to prevent ODLG damage.  相似文献   

16.
白藜芦醇对大鼠脑缺血再灌注氧化应激损伤的影响   总被引:2,自引:2,他引:0  
目的探讨白藜芦醇(Resveratrol,Res)对大鼠脑缺血再灌注氧化应激损伤的影响。方法将SD大鼠随机分为假手术组(S组)、缺血再灌注组(I/R组,线栓法复制大鼠右侧大脑中动脉栓塞模型)、Res低剂量组(15 mg/kg,I/R+R1组)和Res高剂量组(30 mg/kg,I/R+R2组),于缺血2 h再灌注24 h进行神经功能缺损评分;化学比色法测定大鼠血清和脑组织中丙二醛(Malondialdehyde,MDA)含量及超氧化物歧化酶(Superoxide dismutase,SOD)活性;TTC法测定脑梗死体积;干湿重法测定脑含水量,HE染色观察脑组织的病理改变。结果与I/R组相比,Res能改善大鼠脑缺血再灌注损伤后的神经功能缺失(P<0.01),降低血清及脑组织中MDA的含量(P<0.01),提高SOD活性(P<0.01),缩小脑梗死体积(P<0.01),降低损伤侧脑含水量(P<0.01),改善脑组织的病理变化,且呈剂量依赖性。结论 Res对大鼠局灶性脑缺血再灌注氧化应激损伤具有良好的保护作用,其机制可能与清除自由基,减轻氧化性损伤有关。  相似文献   

17.
Ischemic episodes are a leading cause of death worldwide with limited therapeutic interventions. The current study explored mitochondrial phosphate-activated glutaminase (GLS1) activity modulation by PKCβII through GC-MS untargeted metabolomics approach. Mitochondria were used to elucidate the endogenous resistance of hippocampal CA2-4 and dentate gyrus (DG) to transient ischemia and reperfusion in a model of ischemic episode in gerbils. In the present investigation, male gerbils were subjected to bilateral carotids occlusion for 5 min followed by reperfusion (IR). Gerbils were randomly divided into three groups as vehicle-treated sham control, vehicle-treated IR and PKCβII specific inhibitor peptide βIIV5-3-treated IR. Vehicle or βIIV5-3 (3 mg/kg, i.v.) were administered at the moment of reperfusion. The gerbils hippocampal tissue were isolated at various time of reperfusion and cell lysates or mitochondria were isolated from CA1 and CA2-4,DG hippocampal regions. Recombinant proteins PKCβII and GLS1 were used in in vitro phosphorylation reaction and organotypic hippocampal cultures (OHC) transiently exposed to NMDA (25 μM) to evaluate the inhibition of GLS1 on neuronal viability. PKCβII co-precipitates with GAC (GLS1 isoform) in CA2-4,DG mitochondria and phosphorylates GLS1 in vitro. Cell death was dose dependently increased when GLS1 was inhibited by BPTA while inhibition of mitochondrial pyruvate carrier (MPC) attenuated cell death in NMDA-challenged OHC. Fumarate and malate were increased after IR 1h in CA2-4,DG and this was reversed by βIIV5-3 what correlated with GLS1 activity increases and earlier showed elevation of neuronal death (Krupska et al., 2017). The present study illustrates that CA2-4,DG resistance to ischemic episode at least partially rely on glutamine and glutamate utilization in mitochondria as a source of carbon to tricarboxylic acid cycle. This phenomenon depends on modulation of GLS1 activity by PKCβII and remodeling of MPC: all these do not occur in ischemia-vulnerable CA1.  相似文献   

18.
Inflammation and oxidative stress play an important part in the pathogenesis of focal cerebral ischemia/reperfusion (I/R) injury, resulting in neuronal death. The signaling pathways involved and the underlying mechanisms of these events are not fully understood. Chrysin, which is a naturally occurring flavonoid, exhibits various biological activities. In this study, we investigated the neuroprotective properties of chrysin in a mouse model of middle cerebral artery occlusion (MCAO). To this end, male C57/BL6 mice were pretreated with chrysin once a day for seven days and were then subjected to 1 h of middle cerebral artery occlusion followed by reperfusion for 24 h. Our data show that chrysin successfully decreased neurological deficit scores and infarct volumes, compared with the vehicle group. The increases in glial cell numbers and proinflammatory cytokine secretion usually caused by ischemia/reperfusion were significantly ameliorated by chrysin pretreatment. Moreover, chrysin also inhibited the MCAO-induced up-regulation of nuclear factor-kappa B (NF-κB), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS), compared with the vehicle. These results suggest that chrysin could be a potential prophylactic agent for cerebral ischemia/reperfusion (I/R) injury mediated by its anti-inflammatory and anti-oxidative effects.  相似文献   

19.
Growth and differentiation factor 15 (GDF15) belongs to the transforming growth factor-β (TGF-β) superfamily of proteins. Glial-derived neurotrophic factor (GDNF) family receptor α-like (GFRAL) is an endogenous receptor for GDF15 detected selectively in the brain. GDF15 is not normally expressed in the tissue but is prominently induced by “injury”. Serum levels of GDF15 are also increased by aging and in response to cellular stress and mitochondrial dysfunction. It acts as an inflammatory marker and plays a role in the pathogenesis of cardiovascular diseases, metabolic disorders, and neurodegenerative processes. Identified as a new heart-derived endocrine hormone that regulates body growth, GDF15 has a local cardioprotective role, presumably due to its autocrine/paracrine properties: antioxidative, anti-inflammatory, antiapoptotic. GDF15 expression is highly induced in cardiomyocytes after ischemia/reperfusion and in the heart within hours after myocardial infarction (MI). Recent studies show associations between GDF15, inflammation, and cardiac fibrosis during heart failure and MI. However, the reason for this increase in GDF15 production has not been clearly identified. Experimental and clinical studies support the potential use of GDF15 as a novel therapeutic target (1) by modulating metabolic activity and (2) promoting an adaptive angiogenesis and cardiac regenerative process during cardiovascular diseases. In this review, we comment on new aspects of the biology of GDF15 as a cardiac hormone and show that GDF15 may be a predictive biomarker of adverse cardiac events.  相似文献   

20.
Ischemic heart disease is the major cause of mortality and morbidity worldwide. Early reperfusion after acute myocardial ischemia has reduced short-term mortality, but it is also responsible for additional myocardial damage, which in the long run favors adverse cardiac remodeling and heart failure evolution. A growing body of experimental and clinical evidence show that the mitochondrion is an essential end effector of ischemia/reperfusion injury and a major trigger of cell death in the acute ischemic phase (up to 48–72 h after the insult), the subacute phase (from 72 h to 7–10 days) and chronic stage (from 10–14 days to one month after the insult). As such, in recent years scientific efforts have focused on mitochondria as a target for cardioprotective strategies in ischemic heart disease and cardiomyopathy. The present review discusses recent advances in this field, with special emphasis on the emerging role of the biologically active thyroid hormone triiodothyronine (T3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号