首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The technique of introducing interlayers has been used extensively to mitigate residual thermal stresses in joining dissimilar materials. Finite-element analyses have often been used to quantify thermal stresses in these layered structures in case-by-case studies. Recently, simple analytical models containing only three unknowns have been developed to derive closed-form solutions for elastic thermal stresses in both multilayer systems and two layers joined by a graded junction. The analytical solutions are exact for locations away from the free edges of the system. Application of these solutions is shown here to provide a systematic study of thermal stresses in Si3N4 and Al2O3 layers joined by various sialon polytypoid-based multi- and graded interlayers. The effects of the thickness, stiffness, and coefficient of thermal expansion of the interlayer on thermal stresses in the system are examined. The differences in thermal stresses resulting from multi- and graded interlayers are shown.  相似文献   

2.
Most industrial porcelain tiles suffer changes in their curvature after firing: such process is known as delayed curvature. One of the hypotheses used to explain this phenomenon is based on the relaxation of residual stresses by creep. In this study two types of industrial glazed porcelain tiles have been studied. One of them displayed delayed curvature after firing, whereas the other one presented a stable curvature. The main objective was to determine if the delayed curvatures were caused by the residual stresses generated during rapid industrial cooling. Both types of existing residual stresses (thermal stresses, caused by thermal gradients inside the tile during cooling, and body–glaze fit stresses, due to the thermal expansion mismatch between body and glaze) were measured, as well as related samples properties (elastic modulus, creep behaviour, thermal expansion). The results demonstrated that the residual stresses are not the main cause of the delayed curvature phenomenon.  相似文献   

3.
With the wide application of fiber-reinforced composite materials in aircraft, space structures and robot arms, the design and manufacture of composite joints have become a very important research area because they are often the weakest areas in composite structures. In this study, the effects of the adhesive thickness and tensile thermal residual stress on the torque capacity of tubular single lap joints were studied. The torque capacities of the adhesive joints were experimentally determined and found to be inversely proportional to the adhesive thickness. In order to match the experimental results to the theoretical analyses, the elastic-perfectly plastic material properties of the adhesive were used in the closed form solution. Also, the tensile thermal residual stresses of the joints were calculated by the finite element method and it was found that the thermal residual stresses could play an important role in the torque capacity when the adhesive thickness was large.  相似文献   

4.
In this work, a smart cure cycle with cooling, polymerization and reheating was devised to nearly completely eliminate thermal residual stresses in the bonding layer of the co-cure bonded hybrid structure. In situ dielectrometry cure monitoring, DSC experiments and rheometric measurements were performed to investigate the physical state and the cure kinetics of the neat epoxy resin in the carbon fiber/epoxy composite materials. From the experimental results, an optimal cooling point in the cure cycle was obtained. Also, process parameters such as cooling rate, polymerization temperature and polymerization time in the curing process were investigated. Then, the thermal residual stresses were estimated by measuring the curvatures of co-cure bonded steel/composite strips and their effects on the static lap-shear strengths of co-cure bonded steel/composite lap joints were measured. Also, the effects of thermal residual stresses on the tensile strength, the interlaminar shear strength and the interlaminar fracture toughness of the composite material itself were measured using tensile, short beam shear and double cantilever beam tests. From these results, it was found that the smart cure cycle with cooling, polymerization and reheating eliminated the thermal residual stresses completely and improved the interfacial strength of the co-cure bonded hybrid structures, as well as the tensile strength of the composite structures.  相似文献   

5.
The residual internal stresses in a cylindrical wire produced in the rotating-water melt spinning process and a coated wire obtained by drawing from a melt have been calculated within the thermal viscoelasticity and structural relaxation theories. The coated wire consists of the core and the sheath with different thermal properties. The problem is considered with allowance made for the generation and the relaxation of stresses in the core and the sheath in the temperature range from initial (corresponding to the liquid state of a two-layer wire) to room temperature. The distributions of the residual stresses have been calculated for the free amorphous metallic wire and the amorphous wire with the sheath having a different elastic modulus and thermal expansion coefficient. The influence of preparation conditions and thermal properties of materials on the calculated parameters is analyzed.  相似文献   

6.
The residual internal stresses in a cylindrical wire produced in the rotating-water melt spinning process and a coated wire obtained by drawing from a melt have been calculated within the thermal viscoelasticity and structural relaxation theories. The coated wire consists of the core and the sheath with different thermal properties. The problem is considered with allowance made for the generation and the relaxation of stresses in the core and the sheath in the temperature range from initial (corresponding to the liquid state of a two-layer wire) to room temperature. The distributions of the residual stresses have been calculated for the free amorphous metallic wire and the amorphous wire with the sheath having a different elastic modulus and thermal expansion coefficient. The influence of preparation conditions and thermal properties of materials on the calculated parameters is analyzed.  相似文献   

7.
《Ceramics International》2017,43(4):3670-3678
Layered ceramic systems are usually hit by residual thermal stresses created during cooling from high processing temperature. The purpose of this study was to determine the thermal residual stresses at different ceramic multi-layered systems and evaluate their influence on the bending stress distribution. Finite elements method was used to evaluate the residual stresses in zirconia-porcelain and alumina-porcelain multi-layered discs and to simulate the ‘piston-on-ring’ test. Temperature-dependent material properties were used. Three different multi-layered designs were simulated: a conventional bilayered design; a trilayered design, with an intermediate composite layer with constant composition; and a graded design, with an intermediate layer with gradation of properties. Parameters such as the interlayer thickness and composition profiles were varied in the study. Alumina-porcelain discs present smaller residual stress than the zirconia-porcelain discs, regardless of the type of design. The homogeneous interlayer can yield a reduction of ~40% in thermal stress relative to bilayered systems. Thinner interlayers favoured the formation of lower thermal stresses. The graded discs showed the lowest thermal stresses for a gradation profile given by power law function with p=2. The bending stresses were significantly affected by the thermal stresses in the discs. The risk of failure for all-ceramic dental restorative systems can be significantly reduced by using trilayered systems (homogenous or graded interlayer) with the proper design.  相似文献   

8.
纤维增强热固性复合材料构件的固化变形研究进展   总被引:1,自引:0,他引:1  
热固性复合材料的固化是一个热性能、化学性能和力学性能同时发生变化的复杂过程,也是固化变形和残余应力产生的过程。引起复合材料变形的因素主要包括构件的结构形式、树脂含量、铺层方式、基体树脂的特性、固化工艺参数及模具因素等。其中,复合材料固化过程中树脂的热收缩、化学收缩以及模具材料与复合材料间热膨胀系数的差异是引起复合材料发生固化变形的根本原因。  相似文献   

9.
The objective of this work was to characterize the microstructure, mechanical properties and residual stresses in glass fiber reinforced polypropylene (PP) composites with respect to the thermoforming parameters and as a function of the fiber-matrix interface quality. First, differential scanning calorimetry (DSC) was used to investigate the crystallization behavior of the PP matrix. Second, short beam shear tests and tensile tests in the ±45° directions have been conducted to characterize respectively the interfacial strength and the matrix properties in the composites. Finally, residual stresses were measured via the curvatures of unsymmetric cross-plied laminates. The cooling rate was found to be a critical parameter of the molding process since the matrix crystallization temperature, the interfacial strength as well as the residual stresses showed large variations with various cooling rates. At slow cooling, the crystallization process initiates at higher temperatures and covers longer time periods resulting in more spherulitical matrix structures. In this case, the composites becomes stiffer but also fragile indicating a decrease in the stress transfer efficiency at the interface level. This effect was also observed in the improved interface system, suggesting that the fiber-matrix interaction operates through the amorphous phase surrounding the fibers. The fiber-matrix interface improvement was accompanied by an increase in residual stresses, possibly due to the inhibition of some stress relief mechanism.  相似文献   

10.
For a chemical vapor deposition (CVD) coating/substrate system, an improved and optimized numerical model is established to predict the residual thermal stresses. This model takes into account both the normal and bending strains and is developed based on the concept of a misfit strain between coating and substrate. Comparisons are presented between predictions from this model and from finite element analysis. The effects of coating thickness, elastic modulus, temperature difference, and multiple deposition on the residual stresses in the coating/substrate system have also been analyzed in detail. Furthermore, some confirmatory CVD SiC experiments with different layers have also been conducted according to the analysis model. The predictions that the multiple deposition system can relieve the residual thermal stresses and reduce the microcracks in the outermost coating effectively, are consistent with the numerical model.  相似文献   

11.
采用盲孔法对4种丙烯腈–丁二烯–苯乙烯塑料(ABS)热焊板进行了残余应力的测量,获得了这4种热焊板焊趾区的残余应力数据,结果发现,ABS经过热焊成型后容易在焊趾区形成较高的残余应力,随着测量时间的延长,热焊板焊趾区的残余应力逐渐增大,在测量7 min后释放完全。为了验证盲孔法应用于塑料热焊板残余应力检测的可行性,对ABS热焊板母材区和焊趾区以及热处理前后焊趾区的残余应力进行了测量,同时测试了4种热焊板的焊接强度,发现母材区的残余应力低于焊趾区,80℃热处理后焊趾区的残余应力比热处理前的低,残余应力较低的热焊板具有较高的焊接强度,这些结果均表明盲孔法对塑料热焊板件残余应力测量结果具有一定的参考价值。  相似文献   

12.
Composite patches bonded to cracked metallic aircraft structures have been shown to be a highly cost-effective method for extending the service life of the structures. The fatigue crack growth behavior of pre-cracked 7075-T6 aluminum substrate with the 12.7-mm V-notch crack repaired with boron/epoxy composite patches was investigated. 1-ply, 2-ply, 3-ply and 4-ply composite patches were studied. The residual stresses due to mismatch of the coefficients of thermal expansion between the aluminum plate and boron/epoxy composite patch were calculated based on the classical equation. The effects of the residual stresses and patch layers on fatigue lifetime, fatigue crack growth rate, and fatigue failure mode of the repaired plates were examined experimentally. A modified analytical model, based on Rose's analytical solution and Paris power law, was developed for this research. This model considered the residual stress effect and successfully predicted the fatigue lifetime of the patched plates. Results showed that the composite patch had two competing impacts on the structure. The composite patch could cause residual tensile stress in the aluminum substrate, which could consequently increase the crack growth rate. Moreover, reinforcement with the composite patch could also retard the crack propagation in the aluminum plate. If a 4-ply composite patch was used, it resulted in high residual stresses and effectively would not extend the fatigue lifetime of cracked aluminum plates.  相似文献   

13.
Craig A. Taylor 《Carbon》2003,41(10):1867-1875
Thin carbon films are used to hermetically seal and improve the performance of devices exposed to extreme conditions. Such films, which are deposited by chemical vapor deposition, develop residual thermal stresses due to a mismatch in the coefficient of thermal expansion between the film and substrate. Residual stresses reduce the adhesion of the film, and are a common cause of coating failure. This work investigates heat treatment as a potential technique to reduce residual stresses in thin carbon films. The magnitude of the residual stress has been challenging to measure due to the associated size scales and mechanical properties. In this study, experimental measurements of mechanical properties and residual stresses in thin carbon films are performed using nanoindentation and Raman spectroscopy. The results relate surface residual stresses to film thickness and heat treatment temperature. The approach presented in this study is a nondestructive and non-intrusive method for measuring residual surface stress and properties in thin films, and is ideal for small or curved-surface specimens such as optical fibers and other photonic devices.  相似文献   

14.
Laser ablation of high-temperature ceramic coatings results in thermal residual stresses due to which the coatings fail by cracking and debonding. Hence, the measurement of such residual stresses during laser ablation process holds utmost importance from the view of performance of coatings in extreme conditions. The present research aims at investigating the effect of laser parameters such as laser pulse energy, scanning speed and line spacing on thermal residual stresses induced in tantalum carbide-coated graphite substrates. Residual stresses were measured using micro-Raman spectroscopy and correlated with Raman peak shifts. Transient thermal analysis was performed using COMSOL Multiphysics to model the single ablated track and residual stresses were reported at low, moderate and high pulse energy regimes. The results showed that the initial laser conditions caused higher tensile residual stresses. Moderate pulse energy regime comprised higher compressive residual stresses due to off centre overlapping of the laser pulses. Higher pulse energy (250 μJ), higher scanning speed (1000 mm/s) and moderate line spacing (20 μm) caused accumulation of tensile residual stresses during the final stage of laser ablation. The deviation of experimental residual stresses from COMSOL numerical model was attributed to unaccounted additional stresses induced during thermal spraying process and deformation potentials in the numerical model.  相似文献   

15.
In recent years, numerous analytical and experimental researches have been performed on the prediction of thermal stresses in mass concrete structures. However, due to the difficulty of the problem, limitations still exist for both analytical and experimental methods of measuring thermal stresses in mass concrete. In this research, a new experimental device measuring thermal stresses directly in a laboratory setting is developed. The equipment is located in a temperature chamber that follows the temperature history, which has been previously obtained from temperature distribution analyses. Thermal forces are measured continuously by two load cells in the device. The results show that the thermal stresses estimated by the newly developed device agree well with general stress variations in actual structures.  相似文献   

16.
Using a newly developed object-oriented finite-element analysis method, both an actual microstructure and model microstructures of a plasma-sprayed thermal barrier coating system were numerically simulated to analyze the full-field residual stresses of this coating system. Residual stresses in the actual microstructure were influenced by both the irregular top-coat/bond-coat interface and cracks in the top coat. By treating the microcracked top coat as a more-compliant solid microstructure, the effects of the irregular interface on residual stresses were examined. These results then could be compared to results that have been obtained by analyzing a model microstructure with a sinusoidal interface, which has been considered by some earlier investigators.  相似文献   

17.
The role of the size and type of residual stresses and their distribution in the interior of polycarbonate mold-injected test bars was studied, in view of the interrelationship between toughness and thermal or environmental history. The large thermal gradient during solidification of the polymer in the mold builds up compressive stresses near the wall and tensile stresses in the core. Annealing followed by slow cooling may reverse the type of stresses near the surface, while quenching augments the compressive stress. The latter stress near the wall is responsible for the extraordinarily high impact strength of polycarbonate. Exposure to the atmosphere and immersion in hot water may affect the distribution of residual stresses and thus contribute to the embrittlement of the originally tough polymer. The importance of molecular weight and polymer stabilization is elucidated.  相似文献   

18.
A nondestructive technique based on the photoelastic properties of transparent polymers has been used to monitor the distribution of residual stress components in circular rods of poly(methyl methacrylate) (PMMA). The influence of various thermal histories on these stresses as well as on the molecular birefringence has been determined. The technique has been further simplified to obtain the values of maximum tensile and compressive residual stresses with the help of just two photoelastic measurements. The stresses so obtained are within 10% of the values obtained using detailed experimental measurements and their analysis. The simplified procedure is, therefore, suitable for “on-line” determination of residual stresses in extrusion industry.  相似文献   

19.
Finite element analysis was used to estimate thermal residual stresses developed in silicon nitride bodies bonded by metallic interlayers. Stresses were calculated for various characteristic metals, namely, Ni, Al, and Si, assuming elastic and elastic-plastic behavior. The relative importance of the metal properties, such as thermal expansion coefficient, stiffness and ductility, has been evaluated. Two different joint geometries, butt and lap, have been used in stress calculations, and special care was taken in the mesh generation, to obtain comparable results. The yield stress of the interlayer material rather than thermal expansion mismatch is the critical factor in thermal residual tensile stress buildup inside ceramic adherents.  相似文献   

20.
The microstructures of alumina-aluminum titanate (A-AT) composites have been tailored with the intent of altering their crack-resistance ( R - or T -curve) behavior and resulting flaw tolerance. Specifically, two microstructural parameters which influence grain-localized crack bridging, viz., (i) internal residual stresses and (ii) microstructural coarseness, have been investigated. Particulate aluminum titanate was added to alumina to induce intense internal residual stresses from extreme thermal expansion mismatch. It was found that A-AT composites with uniformly distributed 20–30 vol% aluminum titanate ("duplex") showed significantly improved flaw tolerance over single-phase alumina. Coarsening of the duplex microstructure via grain growth scaling was relatively ineffective in improving the flaw tolerance further. Onset of spontaneous microcracking precluded further exploitation of this scaling approach. Therefore, an alternative approach to coarsening was developed, in which a uniform distribution of large alumina grains was incorporated within a fine-grain A-AT matrix ("duplex-bimodal"), via a powder processing route. The duplex-bimodal composites yielded excellent flaw tolerance with steady-state toughness of ∼8 MPa˙m1/2. A qualitative model for microstructure development in these duplex-bimodal composites is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号