首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Co-N on alumina catalyst yielded high performance in the oxidative cracking of n-butane to ethylene and propylene. A total of 47.7 wt.% yield of olefins including 31% of ethylene and 13% of propylene were obtained at 82% of n-butane conversion at 600 °C. Catalyst characterization by SEM, X-ray photoelectron spectroscopy (XPS), XRD and TPR studies suggested that a cobalt oxynitride phase was formed. This resulted in lowering the oxygen binding energy leading to enrichment in mobile, low energy, oxygen species that significantly accelerates the formation of lower olefins.  相似文献   

2.
The chain length and hydrocarbon type significantly affect the production of light olefins during the catalytic pyrolysis of naphtha. Herein, for a better catalyst design and operation parameters optimization, the reaction pathways and equilibrium yields for the catalytic pyrolysis of C5–8 n/iso/cyclo-paraffins were analyzed thermodynamically. The results revealed that the thermodynamically favorable reaction pathways for n/iso-paraffins and cyclo-paraffins were the protolytic and hydrogen transfer cracking pathways, respectively. However, the formation of light paraffin severely limits the maximum selectivity toward light olefins. The dehydrogenation cracking pathway of n/iso-paraffins and the protolytic cracking pathway of cyclo-paraffins demonstrated significantly improved selectivity for light olefins. The results are thus useful as a direction for future catalyst improvements, facilitating superior reaction pathways to enhance light olefins. In addition, the equilibrium yield of light olefins increased with increasing the chain length, and the introduction of cyclo-paraffin inhibits the formation of light olefins. High temperatures and low pressures favor the formation of ethylene, and moderate temperatures and low pressures favor the formation of propylene. n-Hexane and cyclohexane mixtures gave maximum ethylene and propylene yield of approximately 49.90% and 55.77%, respectively. This work provides theoretical guidance for the development of superior catalysts and the selection of proper operation parameters for the catalytic pyrolysis of C5–8 n/iso/cyclo-paraffins from a thermodynamic point of view.  相似文献   

3.
This study presents new experimental results on the direct conversion of crude oil to chemicals via steam-enhanced catalytic cracking. We have organized the experimental results with a kinetics model using crude oil and steam co-feed in a fixed-bed flow reactor at reaction temperatures of 625, 650, and 675°C over the Ce-Fe/ZSM-5 catalyst. The model let us find optimum conditions for crude oil conversion, and the order of the steam cracking reaction was 2.0 for heavy oil fractions and 1.0 for light oil fractions. The estimated activation energies for the steam cracking reactions ranged between 20 and 200 kJ/mol. Interestingly, the results from kinetic modelling helped in identifying a maximum yield of light olefins at an optimized residence time in the reactor at each temperature level. An equal propylene and ethylene yield was observed between 650 and 670°C, indicating a transition from dominating catalytic cracking at a lower temperature to a dominating thermal cracking at a higher temperature. The results illustrate that steam-enhanced catalytic cracking can be utilized to effectively convert crude oil into basic chemicals (52.1% C2-C4 light olefins and naphtha) at a moderate severity (650°C) as compared to the conventional high-temperature steam cracking process.  相似文献   

4.
This paper investigated the secondary cracking of gasoline and diesel from the catalytic pyrolysis of Daqing atmospheric residue on catalyst CEP-1 in a fluidized bed reactor.The results show that the secondary cracking reactivity of gasoline and diesel is poor,and the yield of total light olefins is only about 10%(by mass).As reaction temperature increases,ethylene yield increases,butylene yield decreases,and propylene yield shows a maximum.The optimal reaction temperature is about 670℃for the production of light olefins.With the enhance- ment of catalyst-to-oil mass ratio and steam-to-oil mass ratio,the yields of light olefins increase to some extent. About 6.30%of the mass of total aromatic rings is converted by secondary cracking,indicating that aromatic hy- drocarbons are not easy to undergo ring-opening reactions under the present experimental conditions.  相似文献   

5.
利用小型固定床实验装置对比研究了轻烃模型化合物的催化裂解性能,从优到劣的顺序依次是正构烯烃、正构烷烃、环烷烃、异构烷烃、芳香烃。正构烷烃、异构烷烃与环烷烃催化裂解的总低碳烯烃收率有较大差别,但是总低碳烯烃选择性却均在56.57%左右。研究了直馏石脑油的催化裂解性能,发现乙丙烯收率和总低碳烯烃收率随反应温度的升高及重时空速的降低而逐渐增大;在反应温度680℃、重时空速4.32 h-1和水油稀释比0.35的条件下,乙丙烯收率35.87%(质量),总低碳烯烃收率为41.94%(质量)。针对轻烃催化裂解提出了原料特征化参数KF,它是原料H/C原子比、相对密度与分子量的函数,能较好地表征轻烃原料的催化裂解性能。  相似文献   

6.
甲醇与C4烯烃偶合制取乙烯和丙烯可行性分析   总被引:4,自引:0,他引:4  
综述了甲醇制取低碳烯烃工艺与C4烯烃催化裂解制丙烯工艺,在此基础上分析了甲醇与C4烯烃共进料制取乙烯和丙烯的可行性。甲醇与C4烯烃共进料能够实现放热反应与吸热反应之间能量上的互补,这有可能在改善催化剂使用寿命及提高乙烯和丙烯选择性方面产生有利的影响。提出了2种其他的偶合方式,即甲醇先与C4烯烃生成醚再进行裂解和甲醇先转化为富含乙烯产物再与C4烯烃歧化,具有研究价值与工业应用前景。  相似文献   

7.
利用小型固定床实验装置研究了乙基环己烷在基于ZSM-5分子筛介孔催化剂上的裂解性能,发现乙基环己烷具有较好的裂解性能,原料转化率在80%以上,乙丙烯收率(质量分数)可达41%,低碳烯烃收率(质量分数)接近50%,液体产物主要是苯、甲苯、二甲苯等芳香烃。同时考虑乙基环己烷催化裂解过程中的热反应与催化反应,建立了包含14个反应的动力学模型。基于4个反应温度下的裂解实验数据,求取了反应动力学模型的参数。求得的表观活化能均在90 kJ·mol-1以下,主要组分收率的模型预测值与实验值的平均相对误差不高于10%。  相似文献   

8.
A 4-step kinetic model of CO2-assisted oxidative dehydrogenation (ODH) of propane to C2/C3 olefins over a novel MoOx/La2O3–γAl2O3 catalyst was developed. Kinetic experiments were conducted in a CREC Riser Simulator at various reaction temperatures (525–600 °C) and times (15–30 s). The catalyst was highly selective towards propylene at all combinations of the reaction conditions. Langmuir-Hinshelwood type kinetics were formulated considering propane ODH, uni- and bimolecular cracking of propane to produce a C1-C2 species. It was found that the one site type model adequately fitted the experimental data. The activation energy for the formation of propylene (67.8 kJ/mol) is much lower than that of bimolecular conversion of propane to ethane and ethylene (303 kJ/mol) as well as the direct cracking of propane to methane and ethylene (106.7 kJ/mol). The kinetic modeling revealed the positive effects of CO2 towards enhancing the propylene selectivity over the catalyst.  相似文献   

9.
为筛选反应活性和烯烃选择性相对较高的催化剂用于研究吸热型碳氢燃料的催化裂解,以正己烷的催化裂解作为探针反应,探讨其在不同硅铝物质的量比HZSM-5[n(Si)∶n(Al)=25、36、100]分子筛上催化裂解的反应活性和产物分布。结果表明,正己烷在HZSM-5分子筛上的裂解转化率随温度的升高和分子筛中硅铝物质的量比的减小而增大;裂解产物中乙烯、丙烯和总烯烃的选择性均随裂解温度的升高和分子筛中硅铝物质的量比的增加而增加,在(300~550) ℃,HZSM-5[n(Si)∶n(Al)=36]上的总烯烃收率最高,芳烃含量随分子筛中硅铝物质的量比的增加而减小;基于裂解转化率、烯烃和芳烃收率等因素综合考虑,HZSM-5 n(Si)∶n(Al)=36]分子筛为优选催化剂。  相似文献   

10.
流化催化裂化汽油改质和增产低碳烯烃的研究   总被引:4,自引:0,他引:4  
采用GL型催化剂,在小型固定流化床实验装置上考察了反应温度、剂油比、空速和水油比等操作条件对流化催化裂化(FCC)汽油催化改质汽油的产品分布、低碳烯烃(丁烯、丙烯和乙烯)产率和族组成的影响。实验结果表明,在一定反应条件下,FCC汽油通过催化改质可以降低烯烃含量,提高芳烃含量和辛烷值,在满足新汽油标准的同时提高了低碳烯烃的产率。此外,较高的反应温度、剂油比和水油比以及较低的空速有利于FCC汽油催化改质和增产低碳烯烃。  相似文献   

11.
考察了碳五烷烃的热裂解和催化裂解反应性能,发现正戊烷和异戊烷的裂解反应产物存在差异;进一步分析了正戊烷和异戊烷的裂解反应机理,以及裂解生成低碳烯烃和甲烷的区别。结果表明,在热裂解条件下,正戊烷的(乙烯+丙烯)选择性高于异戊烷,异戊烷的丁烯和甲烷选择性高于正戊烷;650℃时,正戊烷和异戊烷的热裂解产品中(乙烯+丙烯)、丁烯、甲烷的选择性分别为37.48%、7.23%、6.75%和19.57%、25.16%、9.36%。而在催化裂解条件下,异戊烷的(乙烯+丙烯)、丁烯、甲烷选择性均高于正戊烷;650℃时,正戊烷和异戊烷的催化裂解产品中(乙烯+丙烯)、丁烯、甲烷的选择性分别为37.16%、9.11%、7.80%和47.70%、14.45%、13.79%。此外,发现在高温裂解条件下异构烷烃比正构烷烃容易裂解生成丁烯和甲烷。  相似文献   

12.
The effect of temperature, WHSV and Fe loading over HZSM-5 catalyst in thermal-catalytic cracking (TCC) of naphtha for the production of light olefins has been studied. The response surface defined by three most significant parameters is obtained from Box-Behnken design method and the optimal parameter set is found. The results show that ethylene increases with temperature, while propylene shows an optimum at 650 °C. Moderate WHSV is favorable for maximum production of light olefins. Addition of Fe to HZSM-5 has a favorable effect on the production of light olefins up to 6% of loading. Excess amount of loading decreases the conversion of naphtha, which leads to a drop in light olefin yields. The yield of light olefins (ethylene and propylene) at 670 °C, 44 hr−1 and 6 wt% Fe has been increased to 5.43 wt% compared to the unmodified HZSM-5 and reaches to 42.47 wt%.  相似文献   

13.
甲醇制烯烃工艺近年来已成为煤化工领域的研究热点。不同的甲醇制烯烃催化剂将导致不同的反应过程,以SAPO-34为催化剂时,甲醇主要遵循烃池机理,通过快速的平行反应直接生产乙烯和丙烯(MTO)等低碳烯烃;以ZSM-5为催化剂时,甲醇主要遵循双循环机理中的烯烃循环机理,通过甲基化-裂解等多步反应间接生产丙烯(MTP)。这种反应特征的不同也决定着反应器类型和工艺条件的不同:SAPO-34催化剂易失活的特性决定了工业MTO过程通常采用易再生的流化床反应器从甲醇一步生成乙烯和丙烯,而具有良好抗结焦能力的ZSM-5催化剂使得工业MTP过程通常选择易放大的固定床反应器,通过大量烯烃循环与分离逐步获得丙烯。针对SAPO-34催化剂上MTO过程以及ZSM-5催化剂上MTP过程的不同反应情况,综述了近年来甲醇制烯烃代表性的反应工艺、反应机理以及反应动力学等方面的研究进展,并根据其存在的问题提出了相应的发展方向。  相似文献   

14.
The effects of reaction temperature, mass ratio of catalyst to oil, space velocity, and mass ratio of water to oil on the product distribution, the yields of light olefins (light olefins including ethylene, propylene and butylene) and the composition of the fluid catalytic cracking (FCC) gasoline upgraded over the self-made catalyst GL in a confined fluidized bed reactor were investigated. The experimental results showed that FCC gasoline was obviously reformulated under appropriate reaction conditions. The olefins (olefins with C atom number above 4) content of FCC gasoline was markedly reduced, and the aromatics content and octane number were increased. The upgraded gasoline met the new standard of gasoline, and meanwhile, higher yields of light olefins were obtained. Furthermore, higher reaction temperature, higher mass ratio of catalyst to oil, higher mass ratio of water to oil, and lower space velocity were found to be beneficial to FCC gasoline reformulation and light olefins production.  相似文献   

15.
The enhanced production of light olefins from the catalytic cracking of FCC naphtha was investigated over a mesoporous ZSM-5 (Meso-Z) catalyst. The effects of acidity and pore structure on conversion, yields and selectivity to light olefins were studied in microactivity test (MAT) unit at 600 °C and different catalyst-to-naphtha (C/N) ratios. The catalytic performance of Meso-Z catalyst was compared with three conventional ZSM-5 catalysts having different SiO2/Al2O3 (Si/Al) ratios of 22 (Z-22), 27 (Z-27) and 150 (Z-150). The yields of propylene (16 wt%) and ethylene (10 wt%) were significantly higher for Meso-Z compared with the conventional ZSM-5 catalysts. Almost 90% of the olefins in the FCC naphtha feed were converted to lighter olefins, mostly propylene. The aromatics fraction in cracked naphtha almost doubled in all catalysts indicating some level of aromatization activity. The enhanced production of light olefins for Meso-Z is attributed to its small crystals that suppressed secondary and hydrogen transfer reactions and to its mesopores that offered easier transport and access to active sites.  相似文献   

16.
采用流化床两相模型描述甲醇制烯烃(MTO)过程,采用拉格朗日颗粒跟踪方法模拟催化剂上的积炭与反应,考察了相间传质、催化剂停留时间及返混对MTO过程的影响。结果表明,湍动流化床相间传质速率小于催化反应速率,是MTO过程的速率控制步骤;强化传质和延长催化剂停留时间都能显著提高催化剂的积炭量,有利于提高乙烯与丙烯的选择性;而减小催化剂返混或采用多级串连操作对反应选择性的改善作用不大,采用气固多级逆流操作反而会导致选择性显著下降。  相似文献   

17.
Hybrid catalysts developed for the thermo-catalytic cracking of liquid hydrocarbons were found to be capable of cracking C4 + olefins into light olefins with very high combined yields of product ethylene and propylene (more than 60 wt%) and C2–C4 olefins (more than 80 wt%) at 610–640 °C, and also with a propylene/ethylene weight ratio being much higher than 2.4. The olefins tested were heavier than butenes such as 1-hexene, C10 + linear alpha-olefins (LAO) or a mixture of LAO. The hydrogen spillover effect promoted by the Ni bearing co-catalyst, contributed to significantly enhancing the product yield of light olefins and the on-stream stability of the hybrid catalyst.  相似文献   

18.
The light olefins present in DC and FCC dry gas can be valorized into aromatics and paraffins. A new PtZrGa/MCM-41 catalyst has been synthetized and used to carry out dimerization and trimerization reactions of olefins. The catalyst was characterized by XRD and using FTIR, XPS, 71Ga and 1H NMR spectroscopies. A blend of ethylene–propylene in presence of CS2, hydrogen and benzene were tested in a semi-batch-type reactor. A simplified set of reaction is proposed and the operating variables were explored to study the catalytic activity and selectivity. The paper discusses the catalytic surface composition and the sensitivity of the reactions to temperature, hydrogen partial pressure and ethylene/propylene ratio. The catalyst deactivation was analyzed and the industrial implication was discussed.  相似文献   

19.
采用浸渍法制备了Fe2O3/HZSM-5分子筛催化剂,并用于乙醇脱水与低聚制备丙烯为主的低碳烯烃反应体系.在400~500℃范围内考察了HZSM-5的硅/铝比、氧化铁负载量、反应温度、催化剂氢气还原预处理对产物中烯烃收率的影响.结果表明,HZSM-5硅/铝比为140时,丙烯、丁烯收率最高;氧化铁负载能有效提高烯烃收率,当负载量为2.9%时丙烯收率最高,接近25%;反应初期升高温度可促进丙烯生成,但催化剂寿命缩短;氢气还原预处理能进一步促进乙烯、丙烯生成.  相似文献   

20.
刘俊涛  滕加伟 《工业催化》2015,23(5):406-409
以ZSM-5分子筛为催化剂,碳五烃混合物为裂解原料,考察空速对碳五烃催化裂解制丙烯/乙烯反应性能的影响。结果表明,在580℃和实验空速范围,随着空速的增加,碳五烷烃及烯烃转化率整体呈下降趋势,但碳五烯烃转化率远高于碳五烷烃。乙烯及丙烯收率在空速3 h-1时达到最大,分别为10.51%和13.02%。碳四烯烃收率随空速的升高而降低,但各丁烯异构体相对于总烯烃的质量分布接近热力学平衡态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号