首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 398 毫秒
1.
A new type of nanoporous carbon with a large surface area and mesoporosity was prepared and used as a support for a hydrodesulfurization (HDS) catalyst. The overall activity of CoMoS catalysts for the HDS of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) is affected by the type of support used for preparing the catalyst and decreases in the order of CoMo/(nanoporous carbon)>CoMo/(activated carbon)>CoMo/Al2O3. The surface area of activated carbon is the largest among these three types of supports but is significantly lowered after metal loading during the preparation of the catalyst. On the other hand, the surface areas of the other two supports are largely preserved after metal loading. The intrinsic activity of the catalysts, estimated by dividing the overall HDS rate by the amount of NO adsorbed on the catalyst, shows a trend that is different from that for the overall activity, and follows the order of CoMo/(nanoporous carbon)≈CoMo/Al2O3>CoMo/(activated carbon). The low intrinsic activity of CoMo/(activated carbon) compared to that of the other two catalysts, particularly in the case of 4,6-DMDBT HDS, is obtained because the diffusion of reactants into the catalyst pores is significantly limited. This is not observed with other catalysts supported on nanoporous carbon and alumina. From the results of this study, we conclude that nanoporous carbon is a promising support for HDS catalysts, compared to conventional supports such as alumina and activated carbon, because it has a large surface area and a high mesoporosity, both of which are beneficial to the preparation of highly dispersed metal catalysts without significant pore blocking due to the dispersed metal particles.  相似文献   

2.
A series of NiMo catalysts supported on HNaY(x)–Al2O3 composites with different amounts of HNaY zeolite (x = 0, 5, 10, 20 and 100 wt.% of HNaY) was prepared and tested in the hydrodesulfurization (HDS) of dibenzothiophene (DBT) and 4,6-dimethyl-DBT (4,6-DMDBT). The catalysts were characterized by N2 physisorption, X-ray diffraction (XRD), FT-IR spectroscopy of pyridine and nitrogen oxide adsorption (Py and NO-FT-IR), temperature-programmed reduction (TPR), scanning electron microscopy (SEM-EDX) and high-resolution transmission electron microscopy (HRTEM). It was found that the increase in the zeolite content causes changes in the acidic properties of the catalyst (number of acid sites) as well as in the characteristics of the deposited metallic species (location and dispersion). Different activity trends with the amount of the zeolite were found for the DBT and 4,6-DMDBT hydrodesulfurization on NiMo/HNaY-Al2O3 catalysts. As for the HDS of DBT the alumina-supported catalyst presents the highest activity. The incorporation of the zeolite causes an initial drop and then the recovery of activity with zeolite content. In contrast, for the 4,6-DMDBT the HDS activity always increases with zeolite content. These two different catalytic behaviors seem to be due to two opposite effects, which affect the contribution of the reaction routes available for the HDS of each reactant, these effects are: (i) the decrease of MoS2 dispersion caused by the incorporation of zeolite to the catalyst and (ii) the increase of the proportion of Brönsted acid sites with zeolite content. The reaction product distribution indicates that both types of sites, coordinatively unsaturated sites (CUS) of the MoS2 and zeolite Brönsted acid sites, participate in the 4,6-DMDBT and DBT transformations.  相似文献   

3.
CoMoS/Al2O3 catalysts containing different amounts of fluorine have been tested for the hydrodesulfurization (HDS) of dibenzothiophene (DBT), 4-methyldibenzothiophene (4-MDBT), and 4,6-dimethyldibenzothiophene (4,6-DMDBT), and the results have been analyzed based on three fundamental reactions involved in the HDS mechanism: hydrogenation of the aromatic ring, hydrogenolysis of the C–S bond, and migration of methyl groups in the ring structure. Fluorine addition to the catalyst promotes all of these three reactions due to the enhancement of two factors: the metal dispersion and the catalyst acidity. The extents that the HDS rates are improved by fluorine addition increase in the order of DBT<4-MDBT<4,6-DMDBT. Product distributions change in characteristic trends with fluorine addition depending on the individual reactants. That is, in DBT HDS, CHB obtained by the ring saturation is enhanced more than BP produced by the direct desulfurization, while the opposite trend is observed in 4-MDBT HDS. 4,6-DMDBT HDS shows an intermediate trend: products of both types are promoted to similar extents on fluorinated catalysts. The migration of methyl groups in the reactant ring structure due to the catalyst acidity, which reduces the steric hindrance to the C–S bond, is responsible for the characteristic trends in the product distribution observed with the individual reactants.  相似文献   

4.
The performance of a new type of CoMoS/Al2O3 catalyst, with added fluorine and prepared by sonochemical and chemical vapor deposition (CVD) methods, was investigated in the hydrodesulfurization (HDS) of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT). The catalyst, which was designed to contain optimum amounts of fluorine and cobalt, exhibited a higher activity, ca. 4.6 times higher activity particularly in the HDS of 4,6-DMDBT, than a fluorine-free catalyst prepared by a conventional impregnation method. The enhanced activity of the new catalyst can be attributed to the cumulative effects of individual factors involved in the catalyst preparation. That is, the use of a sonochemical synthesis led to a high dispersion of small MoS2 crystallites on the alumina, and the addition of the Co species to the catalyst by CVD caused a close interaction between the Co species and the MoS2 crystallites to produce numerous CoMoS species, which are the catalytically active species for HDS. The addition of fluorine increased the amounts of acidic sites in the catalyst, which promoted hydrogenation (HYD) route to a greater extent than the direct desulfurization (DDS) route in DBT HDS and both HYD and DDS routes to similar extents in the case of 4,6-DMDBT HDS. Accordingly, the addition of fluorine led to a greater increase in catalytic activity for 4,6-DMDBT HDS than for DBT HDS.  相似文献   

5.
Catalytic activities of Al2O3–TiO2 supporting CoMo and NiMo sulfides (CoMoS and NiMoS) catalysts were examined in the transalkylation of isopropylbenzene and hydrogenation of naphthalene as well as the hydrodesulfurization (HDS) of model sulfur compounds, conventional gas oil (GO), and light cycle oil (LCO). Al2O3–TiO2 supporting catalysts exhibited higher activities for these reactions except for the HDS of the gas oil than a reference Al2O3 supporting catalyst, indicating the correlation of these activities. Generally, more content of TiO2 promoted the activities. Inferior activity of the catalyst for HDS of the gas oil is ascribed to its inferior activity for HDS of dibenzothiophene (DBT) in gas oil as well as in model solvent decane, while the refractory 4,6-dimethyldibenzothiophene (4,6-DMDBT) in gas oil as well as in decane was more desulfurized on the catalyst. Characteristic features of Al2O3–TiO2 catalyst are discussed based on the paper results.  相似文献   

6.
V-Mo based catalysts for oxidative desulfurization of diesel fuel   总被引:1,自引:0,他引:1  
Catalytic oxidative desulfurization (ODS) of a Mexican diesel fuel on a spent HDS catalyst, deactivated by metal deposits, was carried out during several reactive-batch cycles in order to study the catalytic performance to obtain low sulfur diesel. To explain catalytic activity results, Mo and/or V oxides supported on alumina pellets were prepared and evaluated in the ODS of a model diesel using tert-butyl hydroperoxide (TBHP) or H2O2 as oxidant. The catalytic results show that V-Mo based catalysts are more active during several ODS cycles using TBHP. The performance of the catalysts was discussed in terms of reduced species of vanadium oxide, prevailing on the catalysts, which increase the sulfone yield of refractory HDS compounds (DBT, 4-MDBT and 4,6-DMDBT).  相似文献   

7.
More stringent environmental legislation imposes severe requirements to reduce the sulfur content in diesel to ultra-low levels with high efficient catalysts.In this paper,a series of CoMo/NDC@alumina cat-alysts were synthesized by combination of the chemical vapor deposition of nitrogen-doped carbon(NDC) using 1,10-phenanthroline and co-impregnation of Mo and Co active components.The optimal cat-alyst with additive of 25% 1,10-phenanthroline was screened by a series of property characterization and the hydrodesulfrization (HDS) active test.The amount of "CoMoS" active phase of the optimal CoMo/C3 catalyst increased 5.3% as compared with the CoMo/γ-Al2O3.The introduction of NDC improved the sul-fidation degree of Mo by 21.8% as compared to the CoMo/γ-Al2O3 catalyst,which was beneficial to form more active sites.The HDS conversion of the NDC supported catalysts are higher than CoMo/γ-Al2O3 whether for the dibenzothiophene (DBT) or 4,6-dimethyl dibenzothiophene (4,6-DMDBT).Further hydroprocessing evaluation with Dagang diesel revealed that the CoMo/C3 catalyst possessed higher HDS property and the removal rate of DBTs in the diesel increased by 4%-11% as compared to the CoMo/γ-Al2O3 catalyst.  相似文献   

8.
The hydrodesulfurization (HDS) of the highly refractory sulfur-containing compounds, dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT), and the effect of the basic and non-basic nitrogen heterocyclic compounds, such as quinoline and carbazole, on HDS using a dispersed unsupported Mo catalyst and in situ generated hydrogen were studied. Experimental results indicated that the dispersed unsupported Mo catalyst was effective for the HDS of 4,6-DMDBT in a mixture containing DBT. The direct desulfurization pathway (DDS) was the preferred pathway for the HDS of DBT while the hydrogenation pathway (HYD) was the preferred pathway for the HDS of 4,6-DMDBT under our experimental conditions. A strong inhibitive effect of the basic quinoline or the non-basic carbazole on the HDS of each of the sulfur-containing compounds was observed. The DDS and HYD pathways in the HDS of the refractory sulfur-containing compounds were affected to a different extent by the nitrogen-containing compounds, suggesting that different active sites were involved in these two reaction pathways.  相似文献   

9.
Deep hydrodesulphurization (HDS) of dibenzothiophene (DBT) and gas-oil has been carried out on amorphous-silica–alumina (ASA)-supported transition metal sulphides (TMS) under conditions which approach industrial practice. The activity and selectivity of the binary Ni-, Ru- and Pd-promoted Mo catalysts were compared with the monometallic ones (Ru, Ir, Pd, Ni, Mo on ASA). For both HDS of DBT and gas-oil, the observed activity trends were similar; thus, all catalysts were more active with model feed than with gas-oil, and less active than commercial CoMo/Al2O3. The binary catalysts showed larger activity than monometallic ones, with Ni–Mo catalyst being more effective than Ru–Mo or Pd–Mo. For Ni–Mo sample, the X-ray photoelectron and temperature-programmed reduction techniques confirmed that incorporation of Mo minimises metal–support interaction, although the formation of nickel hydrosilicate was not prevented. The consecutive impregnation of calcined Mo/ASA catalyst with precursor solution followed by calcination enhances molybdenum surface exposure in binary samples. As a consequence, the temperature of reduction of MoO3 to molybdenum suboxides is decreased.  相似文献   

10.
NiW HDS catalysts supported on alumina-modified SBA-15 were prepared using acidic solutions of ammonium metatungstate and nickel nitrate. Using this method of preparation the integrity of the SBA-15 support was preserved. The results showed that aluminum incorporation into the support framework leads to higher dispersion of the WS2 phase and gives rise to the formation of Brønsted acid sites, which in turn increase the contribution of the isomerization-direct desulfurization (ISOM-DDS) pathway of 4,6-DMDBT HDS. The higher activity displayed by the Al-modified catalysts in the HDS of 4,6-DMDBT seems to be related to the presence of Brønsted acid sites in the sulfided NiW/Al-SBA15(x) catalysts, to a higher dispersion of the WS2 phase and to the increased number of coordinatively unsaturated sites (CUS) present in the sulfided catalysts.  相似文献   

11.
The applicability of transition metal sulfides (TMS) from the second transition series in deep hydrodesulfurization (HDS) was examined and compared to that of a traditional, supported CoMo/Al2O3 catalyst. Sulfides of Nb, Mo, Ru, Rh and Pd were studied for HDS of dibenzothiophene (DBT) and 4,6‐dimethyldibenzothiophene (4,6‐Me2DBT). Measurements were carried out with unsupported TMS samples at different temperatures and H2S partial pressures. The trend in DBT HDS activities agreed quite well with those found by previous authors. It was furthermore found that the activities of the metal sulfides towards the sterically hindered molecule 4,6‐Me2DBT closely followed those for DBT. This is somewhat surprising since the direct sulfur abstraction route was of major importance for DBT while the prehydrogenation route, in which ring‐hydrogenation in the DBT skeleton precedes desulfurization, was prevalent for 4,6‐Me2DBT. This suggests that common steps are involved in the two routes. For the unsupported metal sulfides, ring‐hydrogenated but not desulfurized DBT and 4,6‐Me2DBT products were found in much larger amounts than for supported and promoted MoS2‐based catalysts. This can be rationalized as being due to a relatively higher hydrogenation/desulfurization selectivity ratio for the different transition metal sulfides. Inhibition by H2S was found to be most pronounced near the center of the transition series. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
V.G. Baldovino-Medrano 《Fuel》2010,89(5):1012-14541
The catalytic functionalities of bimetallic Pt-Mo/γ-Al2O3 catalysts in hydrotreatment were studied by performing simultaneous and independent dibenzothiophene (DBT) hydrodesulfurization (HDS) and naphthalene hydrodearomatization (HDA) reactions as a function of the activating agent and the MoO3 content. Pt-Mo/γ-Al2O3 catalysts always displayed a higher selectivity to both the direct route of desulfurization (DDS) of DBT and to HDS over HDA than the one exhibited by conventional CoMo and NiMo/γ-Al2O3. It was established that for the Pt-Mo catalytic system, the selectivity DDS to the hydrogenation route of desulfurization of DBT can be indirectly described by the selectivity HDS/HDA in simultaneous HDS-HDA catalytic tests. The model of an active phase composed of separated metallic Pt particles, PtSx species, and sulfided Mo which can either act as independent or cooperative active centers seems to be suitable to explain both the observed kinetic trends and the synergy effect between Pt and Mo.  相似文献   

13.
Unsupported NiMo sulfide catalysts were prepared from ammonium tetrathiomolybdate (ATTM) and nickel nitrate by using a hydrothermal synthesis method involving water, organic solvent and hydrogen. The activity of these catalysts in the simultaneous hydrodesulfurization (HDS) of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) was much higher than that of the commercial NiMo/Al2O3 sulfide catalysts. Interestingly, the unsupported NiMo sulfide catalysts showed higher activity for hydrogenation (HYD) pathway than the direct desulfurization (DDS) pathway in the HDS of DBT. The same trends were observed for the HDS of 4,6-DMDBT. Morphology, surface area, pore volume and the HDS activity of unsupported NiMo sulfide catalyst depended on the catalyst preparation conditions. Higher temperature and higher H2 pressure and addition of an organic solvent were found to increase the HDS activity of unsupported NiMo sulfide catalysts for both DBT and 4,6-DMDBT HDS. Higher preparation temperature increased HYD selectivity but decreased DDS selectivity. High-resolution TEM images revealed that unsupported NiMo sulfide prepared at 375 °C shows lower number of layers in the stacks of catalyst with more curvature and shorter length of slabs compared to that prepared at 300 °C. On the other hand, higher preparation pressure increased DDS selectivity but decreased HYD selectivity for HDS of 4,6-DMDBT. HRTEM images showed higher number of layers in the stack for the NiMo sulfide prepared under an initial H2 pressure of 3.4 MPa compared to that under 2.1 MPa. The optimal Ni/(Mo + Ni) ratio for the NiMo sulfide catalyst was 0.5, higher than that for the conventional Al2O3-supported NiMo sulfide catalysts. This was attributed to the high dispersion of the active species and more active NiMoS generated. The present study also provides new insight for controlling the catalyst selectivity as well as activity by tailoring the hydrothermal preparation conditions.  相似文献   

14.
Co, Mo, NiMo and CoMo catalysts supported on alumina, fishbone and platelet carbon nanofibers (CNFs) have been prepared. The dispersion of the oxide phases was qualitatively studied and compared using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The reducibility of the catalysts was studied by temperature programmed reduction (TPR). Hydrodesulfurization (HDS) of thiophene was used as a model reaction to compare the activity of different catalysts. The activity tests showed that the alumina supported catalysts exhibited higher activity compared to the corresponding CNF supported catalysts, and the NiMo catalysts were more active than the corresponding CoMo catalysts. The thiophene HDS activity was correlated with the dispersion of the molybdenum species and the reducibility of different catalysts. Interestingly, the CNF supported Co catalysts have higher thiophene HDS activity than the CNF supported Co(Ni)Mo catalysts.  相似文献   

15.
The potential of mesoporous silica–alumina (MSA) material as support for the preparation of sulfided Pt and Pt–Mo catalysts of varying Pt loadings was studied. The catalysts were characterized by their texture, hydrogen adsorption, transmission electron microscopy, temperature programmed reduction (TPR) and by activity in simultaneous hydrodesulfurization (HDS) of thiophene and hydrodenitrogenation (HDN) of pyridine. Sulfided Pt/MSA catalysts with 1.3 and 2 wt.% Pt showed almost the same HDS and higher HDN activities per weight amounts as conventional CoMo and NiMo/Al2O3, respectively. The addition of Pt to sulfided Mo/MSA led to promotion in HDS and HDN with an optimal promoter content close to 0.5 wt.%. The results of TPR showed strong positive effect of Pt on reducibility of the MoS2 phase which obviously reflects in higher activity of the promoted catalysts. The activity of the MSA-supported Pt–Mo catalyst containing 0.5 wt.% Pt was significantly higher than the activity of alumina-supported Pt–Mo catalyst. Generally, Pt–Mo/MSA catalysts promoted by 0.3–2.3 wt.% Pt showed lower HDS and much higher HDN activities as compared to weight amounts of CoMo and NiMo/Al2O3. It is proposed that thiophene HDS and pyridine hydrogenation proceed over Pt/MSA and the majority of Pt–Mo/MSA catalysts on the same type of catalytic sites, which are associated with sulfided Pt and MoS2 phases. On the contrary, piperidine hydrogenolysis takes place on different sites, most likely on metallic Pt fraction or sites created by abstraction of sulfur from MoS2 in the presence of Pt.  相似文献   

16.
CoMo/Al2O3 catalysts were prepared by impregnating Cobalt nitrate solution into oxidic or sulfided Mo/Al2O3. The properties of CoMo/Al2O3 catalysts were characterized by XRD, TPS, oxygen chemisorption and ESR. Catalytic activity of CoMo/Al2O3 catalyst was evaluated by thiophene HDS as a probe reaction. When CoMo/Al2O3 catalyst was prepared by impregnating Cobalt nitrate solution into sulfided Mo/Al2O3, the interaction between Mo and alumina became weaker and the formation of synergic phase was facilitated. These structural changes may explain higher HDS activity of CoMo/Al2O3 catalyst prepared by impregnating Cobalt nitrate solution into sulfided Mo/Al2O3.  相似文献   

17.
将钼酸按溶液与REHY等体积浸渍和焙烧,制备了Mo/REHY催化剂,采用XRD和NH3-TPD对其进行表征.以质量分数0.6%的二苯并噻吩/正癸烷溶液为模型反应物评价其加氢脱硫性能.结果表明,不同焙烧温度制备的Mo/REHY催化剂,归属于REHY的晶相峰保持完好,金属活性组分Mo进入REHY体相超笼,引起REHY分子筛...  相似文献   

18.
A one-step synthesized Ni-Mo-S catalyst supported on SiO2 was prepared and used for hydrodesulphurization (HDS) of dibenzothiophene (DBT), and 4,6-dimethyl-dibenzothiophene (4,6-DMDBT), and for hydrogenation of tetralin. The catalyst showed relatively high HDS activity with complete conversion of DBT and 4,6-DMDBT at temperature of 280 °C and a constant pressure of 435 psi. The HDS conversions of DBT and 4,6-DMDBT increased with increasing temperature and pressure, and decreasing liquid hourly space velocity (LHSV). The HDS of DBT proceeded mostly through the direct desulphurization (DDS) pathway whereas that of 4,6-DMDBT occurred mainly through the hydrogenation-desulphurization (HYD) pathway. Although the catalyst showed up to 24% hydrogenation/dehydrogenation conversion of tetralin, it had low conversion and selectivity for ring opening and contraction due to the competitive adsorption of DBT and 4,6-DMDBT and insufficient acidic sites on the catalyst surface.  相似文献   

19.
Five catalysts with different hydrodesulfurization (HDS) and hydrogenation activity were tested in HDS of fresh crude heavy atmospheric gas oil (HAGO) (1.33 wt% S), two partially hydrotreated HAGO (1100 and 115 ppm S) and two model compounds, dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (DMDBT), dissolved in model solvents and HAGO. Aromatic compounds in the liquid decreased significantly the HDS rate of 4,6-DMDBT, especially for catalysts with high hydrogenation activity. H2S displayed a similar inhibition effect with all catalysts. These effects were extremely pronounced in HAGO where the DBT HDS rate decreased by a factor of 10 while 4,6-DMDBT – of 20 relative to paraffinic solvent. The feasibility of using a highly active hydrogenation catalyst for deep HDS of HAGO is diminished by the strong impact of aromatics.  相似文献   

20.
马玉莉  向梅  朱鹏远  郑翔  唐天地 《辽宁化工》2014,(6):671-673,675
以廉价的水玻璃、硫酸铝为原料,以阳离子聚季铵盐为介观尺度模板剂,通过水热合成方法制备了较高结晶度的介孔ZSM-5沸石(MZSM-5)。采用等体积浸渍法制备MZSM-5负载CoMo金属硫化物催化剂(CoMo/MZSM-5),考察了其对4,6-二甲基二苯并噻吩加氢脱硫活性。与传统的γ-Al2O3负载的CoMo(CoMo/γ-Al2O3)催化剂相比,CoMo/MZSM-5表现出更高的加氢脱硫活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号