首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
Photoinduced graft copolymerization of vinyl monomers onto deoxy(thiosulfato)chitin (S2O3–chitin) has been studied. Chitin was first tosylated and subsequently transformed into S2O3–chitin. S2O3–chitin has good solubility over tosyl–chitin. Graft copolymerization of S2O3–chitin proceeded very easily by ultraviolet irradiation without catalyst. Photolysis of S2O3 groups was confirmed by infrared spectra. But the photolysis occurred only in quartz, not in a Pyrex tube. Methyl methacrylate (MMA) and acrylonitrile showed good grafting activities. In the case of acrylic acid and acryl amide, homopolymer formation was predominant, and the degree of grafting was low. We chose the MMA monomer for further information. The grafting rate of S2O3–chitin using MMA was much faster than those of chitin and O‐acetyl–chitin. Under the appropriate conditions, the degree of grafting reached 600% only in 2 h, and the grafting efficiency was over 75% in any monomer concentration. But addition of DMSO into the polymerization system decreased the degree of grafting. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 189–195, 1999  相似文献   

2.
The graft copolymerization of methyl methacrylate onto collagen initiated by tributylborane was investigated in aqueous medium. The total conversion, percentage of grafting and efficiency of grafting increased with increasing collagen content. The optimum conditions on the percentage of grafting and efficiency of grafting were determined by varying initiator concentration, monomer concentration, and polymerization temperature. The grafting onto denaturated collagen was also studied. It has been suggested that the grafting onto collagen proceeds by a radical mechanism via a complex of TBB and hydrated collagen.  相似文献   

3.
The grafting of methyl methacrylate (MMA) onto ultra‐high‐molecular‐weight polyethylene (UHMWPE) and chromic acid etched UHMWPE was conducted with a preirradiation method in air in the presence of a Mohr salt and sulfuric acid. The grafted samples were characterized by Fourier transform infrared (FTIR) spectroscopy, a gravimetric method, differential scanning calorimetry, scanning electron microscopy (SEM), and interfacial bonding strength measurements. The FTIR results showed the presence of ether and carbonyl groups in the MMA‐grafted UHMWPE (MMA‐g‐UHMWPE) samples. The Taguchi experimental design method was used to find the best degree of grafting (DG) and bonding strength. The efficient levels for different variables were calculated with an analysis of variance of the results. SEM micrographs of MMA‐g‐UHMWPE samples showed that with increasing DG and chromic acid etching, the MMA‐g‐UHMWPE rich phase increased on the surface; this confirmed the high interfacial bonding strength of the grafted samples with bone cement. The grafting of the MMA units onto UHMWPE resulted in a lower crystallinity, and the crystallization process proceeded at a higher rate for the MMA‐g‐UHMWPE samples compared to the initial UHMWPE; this suggested that the MMA grafted units acted as nucleating agents for the crystallization of UHMWPE. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
EPDM-graft-methyl methacrylate and styrene (EPDM-g-MMA-St) was synthesized by solution graft copolymerization of methyl methacrylate (MMA) and styrene(St) onto ethylene-proplene-diene terpolymer (EPDM) in toluene/n-heptane cosolvent using benzoyl peroxide as an initiator. Fourier transform infrared spectroscopy provides a substantial evidence of grafting of MMA and St onto EPDM. EPDM-g-MMA-St/MS resin blends (MES) were prepared by melt blending EPDM-g-MMA-St and MS resin, and the toughening effects of EPDM-g-MMA-St on MS resin were studied. The results showed that the synthesized conditions of EPDM-g-MMA-St influenced the toughening effect of EPDM-g-MMA-St on MS resin. Notched Izod impact strength of MES increased with increasing grafting ratio, grafting chain polarity of EPDM-g-MMA-St, and EPDM content in MES. Differential scanning calorimetry showed that EPDM-g-MMA-St and MS resin are compatible partially and the compatibility improves with increasing grafting chain polarity of EPDM-g-MMA-St. Transmission electron microscopy and scanning electron microscopy analysis showed that the phase structure was “sea-island” structure, and the particle diameter of EPDM-g-MMA-St increased, meanwhile, surface to surface interparticle distance decreased with an increase in EPDM content, which resulted in the toughening mechanism of MES changed into slight shear yielding of matrix from the damage mode of cavitation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
水解对乙烯—乙酸乙烯共聚物乳液复合的影响   总被引:3,自引:1,他引:2  
乙烯-乙酸乙烯共聚物(EVA)乳液在NaOH作用下进行表面水解处理后,加入甲基丙烯酸甲酯(MMA),在过硫酸铵引发下进行复合反应。对复合乳胶粒的凝胶质量分数的测定、热分析及动态粘弹性的表征表明,随EVA乳胶粒表面水解度的增大,MMA在其表面的接枝率增大,体系的交联程度随之增大,两相相容性得到改善。此外还探讨了复合配比及加入少量丙烯酸对复合体系的影响。  相似文献   

6.
The rheology and morphology of polypropylene (PP) modified by grafting and blending with vinyl monomers were studied in this work. The PP powder was impregnated by mixture of methyl methacrylate (MMA)/n‐buthylacrylate (n‐BA) and copolymerized with azobisisobutyronitrile (AIBN) initiator. The simultaneous grafting and blending of PP with MMA‐co‐n‐BA copolymers were performed in a corotating, 40 L/D, twin‐screw extruder in the presence of dicumyl peroxide. The Fourier transform infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) were used to verify the grafting level and dispersion state of MMA/n‐BA copolymer on PP matrix, respectively, and their rheological properties were studied. It is observed that MMA/n‐BA copolymer is finely dispersed in the PP matrix. In this way, PP can be grafted, blended, and simultaneously compatibilized with polar copolymers, as is seen in SEM images. The results showed that by increasing acrylate monomers grafting on to PP increased. The same trend was observed for AIBN initiator. The gel content of samples with 25% monomers showed an increased from 0.7% to 3.5% by increasing AIBN from 0.2% to 0.4%. The grafting reaction took place with chain scission of PP molecules and also cross‐linking reactions. The optimum grafting of 7.3% with lowest chain scission and cross‐linking were obtained for samples containing 15 wt% monomer and 0.3% AIBN initiator. J. VINYL ADDIT. TECHNOL., 21:290–298, 2015. © 2014 Society of Plastics Engineers  相似文献   

7.
Grinding of tires offers a promising opportunity for recycling waste rubber because fine waste tire rubber particle may be used as fillers and property modifiers in thermoplastic, elastomer, and thermoset blends. However, due to the lack of reactive sites on the WTR surface, the adhesion between WTR powder and matrix is poor. In this article, ozonization of waste tire rubber (WTR) powder was performed to produce some “immobile” reactive points (hydroperoxide groups) on the WTR surface. The free radical generated by the decomposition of hydroperoxide groups on WTR surface, was used to initiate graft polymerization of methyl methacrylate (MMA) onto the surface of WTR powder. The experimental results showed that MMA was successfully grafted onto the surface of WTR. The hydrophilicity of the MMA grafted WTR (MMA‐g‐WTR) was improved. The concentration of hydroperoxide groups and the graft degree were both increased with ozonization time. With increasing of polymerization time and polymerization temperature, the grafting degree increased. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Dimethylaniline (DMA)/CuII-induced grafting of methyl methacrylate (MMA) onto wool fibres was studied under different conditions. The grafting reaction was found to be influenced by CuII, DMA, and MMA concentrations as well as polymerization temperature, reaction time, and polymerization medium. While the graft yield increased by increasing the amount of MMA from 100 to 500 mmol/L, maximum grafting occurred at 0.5 mmol/L CuSO4, 10 mmol/L DMA. The graft yield increased by increasing the reaction time from 15 to 150 min and by raising the polymerization temperature from 60 to 80°C. Using dimethylformamide/water and ethyl alcohol/water mixture as a medium for grafting decreased the graft yield, while using isopropyl alcohol/water mixtures increased the graft yield as compared to pure aqueous medium.  相似文献   

9.
The grafting reactions of styrene (St), methyl methacrylate (MMA), and vinyl acetate (VAc) were investigated in the presence of n-butyl acrylate–acrylonitrile copolymer. Results showed that the nature of monomer and initiator were the major factors influencing the grafting activity. The grafting efficiency was 0.87 for St, 0.26 for MMA, and 0.18 for VAc under the most favorable conditions. Acrylic rubber reduced the rate of polymerization, and the retarding effect increased in the order St, MMA, VAc. The chain transfer constants for acrylic rubber were evaluated to be 4.8 × 10?4 for St, 1.27 × 10?3 for MMA, and 1.45 × 10?3 for VAc. The rate of polymerization and the grafting efficiency decreased with increasing acrylonitrile content in acrylic rubber, while the chain transfer constant of St for acrylic rubber remained practically unchanged.  相似文献   

10.
The grafting of the methyl methacrylate (MMA) monomer onto natural rubber using potassium persulfate as an initiator was carried out by emulsion polymerization. The rubber macroradicals reacted with MMA to form graft copolymers. The morphology of grafted natural rubber (GNR) was determined by transmission electron microscopy and it was confirmed that the graft copolymerization was a surface‐controlled process. The effects of the initiator concentration, reaction temperature, monomer concentration, and reaction time on the monomer conversion and grafting efficiency were investigated. The grafting efficiency of the GNR was determined by a solvent‐extraction technique. The natural rubber‐g‐methyl methacrylate/poly(methyl methacrylate) (NR‐g‐MMA/PMMA) blends were prepared by a melt‐mixing system. The mechanical properties and the fracture behavior of GNR/PMMA blends were evaluated as a function of the graft copolymer composition and the blend ratio. The tensile strength, tear strength, and hardness increased with an increase in PMMA content. The tensile fracture surface examined by scanning electron microscopy disclosed that the graft copolymer acted as an interfacial agent and gave a good adhesion between the two phases of the compatibilized blend. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 428–439, 2001  相似文献   

11.
This research work involves graft copolymerization of jute fibers with methyl methacrylate (MMA), initiated by cerric ions, and optimization of the grafting parameters as a function of different polymerization conditions. It was considered to produce a hydrophobic jute fiber with enhanced properties. To achieve this, the effects of monomer concentration and grafting percentage on FTIR spectra, mechanical properties, moisture regain, oil‐adsorption capacity, and surface morphology were investigated, and optimum percentage of MMA with reasonable properties was suggested. The results indicated that cerric ions initiated graft copolymerization of MMA onto jute with 30% of weight of monomers at optimum conditions of acid concentration and temperature. The FTIR studies proposed grafting of MMA onto jute at hydroxyl groups. The results showed that mechanical properties and moisture regain (%) of samples decrease with increasing of graft percentage. The most remarkable features of this investigation include reducing oil‐adsorption capacity with increasing of lipophilic monomer percentages after one limitation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
The graft polymerization of methyl methacrylate (MMA) initiated by ferric acetyl acetonate/dichloroacetic acid [Fe(acac)3–Cl2CHCOOH] system onto wool has been investigated in a mixture of water and dioxane. No grafting occurred in organic solvent; water was essential to the grafting. Both the total conversion and the percentage of grafting showed maxima when the mole ratio of Fe(acac)3 and Cl2CHCOOH was ¼. Increasing wool content increased the percentage of grafting, while homopolymer conversion was independent of wool content. The rate of grafting was not proportional to MMA concentration. The grafting mechanism was discussed from these results.  相似文献   

13.
The graft copolymerization of methyl methacrylate (MMA) onto sago starch was carried out in aqueous media by different initiators of ceric ammonium nitrate (CAN) and potassium persulfate (PPS) and under a nitrogen gas atmosphere. Using CAN as an initiator, the maximum percentage of grafting (%G) was ascertained to be 246% at the following optimum conditions: a 70°C reaction temperature, a 2‐h reaction period, 2.0 mmol of CAN, 0.4 mmol of nitric acid, and 141 mmol of MMA. The maximum %G achieved with PPS as the initiator was 90%. The optimum conditions were a 50°C reaction temperature, a 1.5‐h reaction period, 47 mmol of monomer, and 1.82 mmol of PPS. The grafting of MMA onto sago starch was confirmed by the IR spectra of pure sago starch, MMA, and MMA grafted sago starch. This material may have application as a biodegradable plastic. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1375–1381, 2001  相似文献   

14.
The synthesis of polymer‐grafted natural rubbers (NRs) was considered through photopolymerization of vinyl monomers initiated from N,N‐diethyldithiocarbamate groups previously introduced onto cis 1,4‐polyisoprene units of NR chains. The development of the procedure was made with methyl methacrylate (MMA) as monomer. First, initiation of MMA photopolymerization was tested using a model molecule of the N,N‐diethyldithiocarbamate‐functionalized 1,4‐polyisoprene unit to verify the feasibility of the procedure considered. Then, MMA polymerization was successfully initiated from N,N‐diethyldithiocarbamate‐functionalized NR backbone used as macroinitiator, and the conditions of grafting were optimized. It was shown that MMA grafting could occur either in monomer medium, in solution in toluene, and in latex medium, and that the quantities of homopolymer formed were still low. Thereafter, grafting studies were performed with other vinyl monomers (styrene, methacrylonitrile, acrylamide, acrylic acid) showing that grafting efficiency depends essentially on the nature of the monomer. The method developed here was shown particularly well adapted for the synthesis of polymer‐grafted NR with monomers of low polarity. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
The effect of grafting of methyl methacrylate (MMA) and acrylonitrile (AN) on the thermal behavior of the pulp of sugar cane loaded with CaCO3 and the pulp of a broad-leaved tree has been studied by thermal methods. Different experimental conditions of grafting AN onto the eucalyptus pulp have been used, including both water and organic solvent systems as the medium of reaction. To optimize the grafting of MMA onto wood pulp, the effect of pulp swelling and the contact time of the monomer with the pulp have been examined. Ungrafted as well as grafted cellulose samples with different levels of grafting were characterized by differential scanning calorimetry (DSC) and the thermogravimetric analysis (TGA). The CaCO3 filler makes the pulp of bagasse thermally more stable. The grafting of MMA onto the bagasse or the wood pulps improves their thermal stability. This is not the case for wood grafted with poly(AN). The thermal stability of the grafted and ungrafted samples varies after a few weight percent has been lost. The glass transition temperature (Tg) of the copolymers have been measured and they are in good agreement with the calculated data. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
Graft copolymers of NR and PMMA (i.e., NR‐g‐PMMA) were prepared with the bipolar redox initiation system, using various percentages of molar ratios of NR/MMA at 95/5, 90/10, 80/20, 70/30, and 60/40. It was found that the Mooney viscosity, shear stress, and shear viscosity of the NR‐g‐PMMA increased with an increase in the molar ratio of MMA used in the graft copolymerization. This may be attributed to an increasing trend of the chemical interaction between polar functional groups within the grafted PMMA molecules. Furthermore, a decreasing trend of storage moduli was observed with increasing molar ratios of MMA. The glass transition temperature was obtained from the tan δ curves. We found a slightly increasing trend of the Tg's with an increase in molar ratios of MMA used in the grafting reaction. The NR‐g‐PMMA was later compounded using TBBS as an accelerator. With an increase in molar ratios of MMA in the grafting reaction, we observed an increasing trend of minimum torque, maximum torque, cure time, and scorch time, but quite similar levels of torque difference and crosslink density. Furthermore, the tensile strength of the NR‐g‐PMMA gum vulcanizate increased with an increase in molar ratios of MMA, whereas the elongation at break decreased. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1600–1614, 2006  相似文献   

17.
Cellulose thiocarbonate was prepared by reacting cotton cellulose fabric with carbon disulphide in the presence of sodium hydroxide. The treated fabric formed, with pentavalent vanadium ion, an effective redox system capable of initiating grafting of methyl methacrylate (MMA) and other monomers no+o the cotton fabric. The dependence of grafting on vanadium concentration, pH of the polymerization medium, temperature and duration of grafting, nature and concentration of monomer, and solvent/water ratio was studied. The results indicated that increasing the pentavalent vanadium (Vv) concentration up to 60 mmol/L was accompanied by enhancement in the rate of grafting; the latter was not affected by further increase in Vv concentration. Maximum grafting yield was achieved at pH 2; grafting fell greatly at higher pH. The rate of grafting followed the order: 70° > 60° > 50°C. The graft yield increased significantly by increasing the MMA concentration from 0.5 to 5%. Of the solvents studied, n-propanol and isopropanol enhanced the grafting rate provided that a solvent/water ratio of 5 : 95 was used; a higher solvent ratio decreased the magnitude of grafting. Other solvents, namely, methanol, ethanol, n-butanol, and acetone, in any proportion, decreased the rate of grafting. With the monomer used, the graft yield followed the order: methyl methacrylate > methyl acrylate > methacrylic acid > ethyl methacrylate > acrylic acid. Also reported was a tentative mechanism for vinyl-graft copolymerization onto cotton fabric using cellulose thiocarbonate-Vv. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
Graft copolymerization of methyl methacrylate (MMA) onto guar gum (GG) in aqueous slurry has been carried out using hydrogen peroxide (H2O2) as initiator. The copolymers were characterized by infrared spectroscopy. The grafting parameters like percent grafting, grafting efficiency, percent add-on, and the grafting frequency were determined, and the effect of reaction time, concentration of initiator, and [GG]/[MMA] ratios on the grafting parameters have been discussed. The decrease in % add-on at increasing concentration of H2O2 indicated enhancement in the rate of homopolymerization of methyl methacrylate.  相似文献   

19.
Graft copolymerization of styrene (St) and methyl methacrylate (MMA) in the presence of natural rubber latex using cumene hydroperoxide/tetraethylenepentamine redox initiator system was prepared at various process variables. The synthesized graft copolymers were purified and then characterized by Fourier transformed infrared spectroscopy analysis. A full 24 factorial experimental design was applied to study the effect of various process variables on grafting efficiency. The following four independent variables considered to be mainly affecting the grafting efficiency were reaction temperature, rubber‐to‐monomer ratio, St‐to‐MMA ratio, and initiator amount used in the secondary polymerization. It was shown in this study that the reaction temperature significantly influenced the grafting efficiency, increasing as the temperature was increased. The amount of grafting increased with increasing rubber‐to‐monomer ratio and St‐to‐MMA ratio, whereas the amount of grafting decreased with increasing amount of initiator. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 455–463, 2004  相似文献   

20.
A novel grafted polymer was prepared in one step through free‐radical melt grafting in a single‐screw extruder. It was shown that the addition of styrene (St) to the melt‐grafting system as a comonomer could significantly enhance the grafting degree of methyl methacrylate (MMA) onto polypropylene (PP) and reduce the degradation of the PP matrix by means of Fourier transform infrared and melt flow rate testing, respectively. Then, the potential of using multimonomer‐grafted PP, which was designated PP‐g‐(St‐co‐MMA), as the compatibilizer in PP/poly(vinyl chloride) (PVC) blends was also examined. In comparison with PP/PVC blends, the average size of the dispersed phase was greatly reduced in grafted polypropylene (gPP)/PVC blends because of the addition of the PP‐g‐(St‐co‐MMA) graft copolymer. The tensile strength of the gPP/PVC blends increased significantly, and the impact strength was unchanged from that of the pure PP/PVC blends. The results of differential scanning calorimetry and scanning electron microscopy suggested that the compatibility of the PP/PVC blends was improved. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号