首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2015,41(7):8868-8877
The ablation properties and mechanisms (under oxyacetylene combustion) together with thermal shock behavior of SiCf/Cf/SiBCN ceramic composites were investigated. The solid ablation products are primarily amorphous SiO2 and cristobalite. The primary ablation mechanisms include fiber and ceramic matrix oxidation, evaporation of B2O3 (l) and SiO2 (l), and mechanical exfoliation. SiCf/Cf/SiBCN has a significantly low mass ablation rate and a desirable linear ablation rate. The combination of crack deflection caused by SiC and carbon fibers, fiber pull-out and debonding improves thermal shock resistance and thus leads to the absence of surface macrocracks.  相似文献   

2.
《应用陶瓷进展》2013,112(8):457-469
Cf/SiBOC was fabricated from 2D carbon fabric as reinforcement and slurry-containing boron-modified phenol formaldehyde (BPF) resin with silicon as matrix resin using reaction-bonded silicon carbide method. The processing involves synthesis of (BPF) resin by reacting various amount of boric acid with phenol formaldehyde resin, polymer to ceramic transformation at 1450°C under argon atmosphere, with and without silicon, thermal transformation of the polymer matrix composite into a ceramic matrix composite and evaluation of isothermal oxidation for ceramics and its composites at 1000, 1250 and 1500°C. The ceramic studies, confirmed the formation of B4C, SiC and SiB4 (SiBOC) mixed phase and the role of boron as a catalyst for graphitisation of free carbon present in the ceramic. Oxidation of Cf/SiBOC composite at various temperatures leads to the formation of borosilicate glass which heals the cracks, hindering the inwards diffusion of oxygen.  相似文献   

3.
A boron-containing SiHfC(N,O) amorphous ceramic was synthesized upon pyrolysis of a single-source-precursor at 1000 °C in Ar atmosphere. The high-temperature microstructural evolution of the ceramic at high temperatures was studied using X-ray powder diffraction, Raman spectroscopy, solid-state nuclear magnetic resonance spectroscopy and transmission electron microscopy. The results show that the ceramic consists of an SiHfC(N,O)-based amorphous matrix and finely dispersed sp2-hybridized boron-containing carbon (i.e. ByC). High temperature annealing of ByC/SiHfC(N,O) leads to the precipitation of HfCxN1-x nanoparticles as well as to β-SiC crystallization. After annealing at temperatures beyond 1900 °C, HfB2 formation was observed. The incorporation of boron into SiHfC(N,O) leads to an increase of its sintering activity, consequently providing dense materials possessing improved mechanical properties as compared to those of boron-free SiC/HfC. Thus, hardness and elastic modulus values up to 25.7 ± 5.3 and 344.7 ± 43.0 GPa, respectively, were measured for the dense monolithic SiC/HfCxN1-x/HfB2/C ceramic nano/micro composite.  相似文献   

4.
The ablation properties andmechanisms of BN-coated Cf-reinforced SiBCNZr composites under an oxyacetylene combustion torch were investigated. The mass and linear ablation rates of the Cf/SiBCNZr ceramic matrix composites were lower than those of Cf/SiBCN and SiCf/SiBCN composites, reaching 0.0022 mg/s and 0.0136 mm/s, respectively. The ablation resistance of the SiBCN ceramics was enhanced by the addition of Zr, whereas the BN-coated Cf increased the thermal shock resistance of the SiBCNZr ceramics. No macrocracks were found on the ablation surface of the Cf/SiBCNZr specimen. The ablation mechanisms based on different ablation temperatures, phase evolution during ablation, and ablation morphologies in the different ablation regions consisted of oxidation of the carbon fibre and ceramic matrix, emission of various gases, the flow of high-viscosity SiO2, and denudation of Cf under the erosion of the ablation flame.  相似文献   

5.
Multicomponent boron-containing carbide (ie, Zr-Ti-C-B) composites show good ablation resistance. The present work is the first report to introduce the powder fabrication of Zr-Ti-C-B using a new method for solid-state diffusion of boron atoms. First, the nonstoichiometric carbide (ie, Zr0.8Ti0.2C0.8) with carbon vacancies was fabricated by free-pressureless spark plasma sintering. Different boron sources such as B2O3, B, and B4C were used to react with the nonstoichiometric carbide. The Zr0.81Ti0.19C0.86B0.14 can be finally generated through the solid-state diffusion of boron atoms using the B2O3 boron source at 1300°C followed by carbon thermal reduction using the phenolic resins at 1600°C.  相似文献   

6.
Aluminum oxide has been introduced into SiCf/(SiC + B4C) composites to improve the crack self-healing property in O2/H2O atmosphere. The observation of the surface and interior morphologies of the oxidized composites reveal that Al2O3 can lead to rapid self-healing of cracks, which will effectively block the oxidation of interior interphase and fiber. Further investigation reveals that Al2O3 plays an important role in impeding the crystallization of SiO2 and limiting the volatilization of B2O3. It is beneficial to form self-healing fluid glass phase and improve glass phase stability. Under these circumstances, the pre-crack can be healed more effectively, which is advantageous for composites to remain high strength retention rate.  相似文献   

7.
Herein, biomimetic Cf/ZrB2-SiC ceramic composites with bouligand structures are fabricated by combining precursor impregnation, coating, helical assembly and hot-pressing sintering. First, Cf/ZrB2-SiC ceramic films are achieved through a precursor impregnation method using polycarbosilane (PCS). Second, the PCS-Cf/ZrB2-SiC ceramic films are coated with ZrB2 and SiC ceramic layers. Finally, hot-pressing sintering is employed to densify helical assembly Cf/ceramic films with a fixed angle of 30°. The microstructures and carbon fiber content on the mechanical properties of biomimetic Cf/ZrB2-SiC ceramic composites are analyzed in detail. The results show that the coated ceramic layer on PCS-Cf/ZrB2-SiC films can heal the cracks formed by pyrolysis of PCS, and the mechanical properties are obviously improved. Meanwhile, the mechanical properties could be tuned by the contents of the carbon fiber. The toughening mechanisms of Cf/ZrB2-SiC ceramic composites with bouligand structures are mainly zigzag cracks, crack deflection, multiple cracks, carbon fiber pulling out and bridging.  相似文献   

8.
Polyboronsilazane (PBSZ) precursors for SiBCN ceramics were prepared by using 9-borabicyclo-[1,3,3] nonane (9-BBN) and copolysilazanes (CPSZ) as starting materials, involving the hydroboration reaction between vinyl groups of PSZ and BH groups of 9-BBN under mild conditions. The as-synthesized PBSZ was obtained as a soluble liquid, which was characterized by FT IR and NMR. The polymer-to-ceramic conversion of PBSZ at a ceramic yield of 62.2–79.9% was investigated by means of FT IR and TGA. The crystallization behavior and microstructures of PBSZ-derived SiBCN ceramics were studied by XRD, SEM and HRTEM. The SiBCN ceramic began to crystallize at 1600 °C. Further heating at 1800 °C induced partial crystallization to give mixed XRD patterns for SiC, Si3N4, and BN(C). It is observed that the introduction of boron improves the thermal stability of SiBCN ceramics, especially under high temperatures of 1600–1800 °C. In addition, the introduction of boron significantly improves the ceramic density while inhibits the SiC crystallization.  相似文献   

9.
A significant improvement of the mechanical performance was observed following the introduction of rare earth oxides in ZrB2-based ultra-high temperature ceramic matrix composites (UHTCMCs), resulting in the formation of ternary boro-carbides of general formula REB2C2, belonging to a new class of layered compounds akin to MAX phases. These layered phases possess high melting points and could be responsible for the toughening of UHTCMCs, but their formation, properties and role were never fully investigated. In this study we focused on the potential routes for the synthesis of YB2C2 phases at temperatures typical of UHTC sintering, starting from Y2O3, carbon and four different boron sources (B, B2O3, BN, B4C) and their microstructure was analysed by SEM, XRD and TEM. The mixture with B4C led to the highest selectivity towards the formation of YB2C2 and was selected to fabricate a long carbon fibre reinforced YB2C2 ceramic composite, which was mechanically tested displaying a flexural strength of 380 MPa. Finally, the chemical stability in air of these materials was assessed.  相似文献   

10.
SiBCN, SiC and SiC-BN ceramics/composites were prepared by mechanical alloyed combined hot-pressing sintering at 1900 °C, and the oxidation kinetics of SiBCN, SiC and SiC-BN were calculated based on the thickness of oxide layers at 1100~1500 °C. The oxide layer can be divided into outer and inner parts under 1300 °C. At 1100 °C, the oxygen molecules diffused in SiC through the gaps in lattice, while diffused in SiBCN by substituting the O in SiO2. Moreover, BN(C) phase in SiBCN can slow down the generation rate of gases such as CO, N2, NO2 and B2O3.  相似文献   

11.
Boron was introduced into Cf/SiC composites as active filler to shorten the processing time of PIP process and improve the oxidation resistance of composites. When heat-treated at 1800 °C in N2 for 1 h, the density of composites with boron (Cf/SiC-BN) increased from 1.71 to 1.78 g/cm3, while that of composites without boron (Cf/SiC) decreased from 1.92 to 1.77 g/cm3. So when boron was used, two cycles of polymer impregnation and pyrolysis (PIP) could be reduced. Meanwhile, the oxidation resistance of composites was greatly improved with the incorporation of boron-bearing species. Most carbon fiber reinforcements in Cf/SiC composite were burnt off when they were oxidized at 800 °C for 10 h. By contrast, only a small amount of carbon fibers in Cf/SiC-BN composite were burnt off. Weight losses for Cf/SiC composite and Cf/SiC-BN composite were about 36 and 16 wt%, respectively.  相似文献   

12.
Geopolymer composites containing refractory, chopped basalt fibers and low-melting glass were made and systematically heat-treated at higher temperatures. Potassium-based geopolymer of stoichiometric composition K2O·Al2O3·4SiO2·11H2O was produced by high shear mixing from fumed silica, deionized water, potassium hydroxide, (i.e., water glass) and metakaolin. With the addition of low-melting glass (Tm ~815°C) the flexure strengths of the composites increased to ~6 MPa after heat treatment above 900°C to 1100°C. A Weibull statistical analysis was performed showing how the amorphous self-healing effect of the glass frit significantly improved the flexure strength of the geopolymer and ceramic composites after high-temperature exposure. At temperatures up to 900°C, the geopolymer-basalt composite remained amorphous and the low-melting glass frit flowed into the dehydration cracks in the geopolymer matrix. This type of composite could be described as amorphous self-healed geopolymer (ASH-G). At ~1000°C, the geopolymer converted to primarily a crystalline leucite ceramic, but the basalt fiber remained intact, and the melted glass frit flowed and sealed the cracks developed at that temperature. This type of composite could then be described as amorphous self-healed ceramic (ASH-C). A temperature of 1150°C was determined to be optimum as at 1200°C the basalt fibers melted and the strength of the reinforcement was lost in the composites. The amorphous self-healing effect of the glass frit significantly improved the room temperature flexure strength of the heat-treated geopolymer-based composites.  相似文献   

13.
SiC fibers reinforced SiBCN ceramic matrix composites (SiCf/BN/SiBCN composites) were synthesized by direct chemical vapor infiltration (CVI), polymer infiltration pyrolysis (PIP) or chemical vapor infiltration combined with polymer infiltration pyrolysis (CVI + PIP). It is shown that the insertion of a continuous and dense SiBCN matrix via the CVI process improves the flexural strength and modulus. Interface debonding and fiber pullout happened with 50–100 nm BN interface in CVI and CVI + PIP SiCf/BN/SiBCN composites. The relative complex permittivity was measured in X-band. Higher ε′′ values in CVI-containing composites can be observed, which can be attributed to the accumulation of C and SiC phases and a multilayer matrix. Strong electromagnetic wave attenuation ability was obtained with high dielectric loss.  相似文献   

14.
Environmental barrier coatings (EBCs) are crucial to the reliability and durability of SiCf/SiC composite components seeking applications in hot sections of next-generation advanced aero-engines. The cracks initiated and developed in EBCs owing to various reasons during service greatly undermine their lifespans. To address this problem, in this work, silicon carbide (SiC) in the forms of particles and whiskers with various amounts have been introduced to ytterbium disilicate (Yb2Si2O7), the mainstream EBC topcoat materials, so as to gain some self-healing potential. The results reveal that, the SiC inclusions in Yb2Si2O7 in the presence of ytterbium monosilicate (Yb2SiO5) can trigger the following reactions. Specifically, SiC self-healing agents are oxidized to form viscous SiO2, which actively reacts with Yb2SiO5 upon encountering it, forming Yb2Si2O7. This has brought twofold beneficial effects including ① silicon supplementation of disilicate topcoat, whose silicon element tends to be “dragged out” by water vapor, leading to the deterioration of thermal mismatch; as well as ② crack self-healing resulting from the volume expansion induced by the above reactions. Then the two aspects of self-healing agents, namely the “promptness” and “sustainability,” have been discussed in detail. The former is unveiled to be more pertinent to the repairing of large cracks, whilst the latter is more relevant to the self-healing of tiny cracks at initiation or early stage of propagation. The current work sheds some lights on the design and development of more durable and robust EBCs with self-healing capability.  相似文献   

15.
Interphase between the fibers and matrix plays a key role on the properties of fiber reinforced composites. In this work, the effect of interphase on mechanical properties and microstructures of 3D Cf/SiBCN composites at elevated temperatures was investigated. When PyC interphase is used, flexural strength and elastic modulus of the Cf/SiBCN composites decrease seriously at 1600°C (92 ± 15 MPa, 12 ± 2 GPa), compared with the properties at room temperature (371 ± 31 MPa, 31 ± 2 GPa). While, the flexural strength and elastic modulus of Cf/SiBCN composites with PyC/SiC multilayered interphase at 1600°C are as high as 330 ± 7 MPa and 30 ± 2 GPa, respectively, which are 97% and 73% of the values at room temperature (341 ± 20 MPa, 41 ± 2 GPa). To clarify the effect mechanism of the interphase on mechanical properties of the Cf/SiBCN composites at elevated temperature, interfacial bonding strength (IFBS) and microstructures of the composites were investigated in detail. It reveals that the PyC/SiC multilayered interphase can retard the SiBCN matrix degradation at elevated temperature, leading to the high strength retention of the composites at 1600°C.  相似文献   

16.
Environmentally friendly commercial applications spurred us to screen a suitable ablative throat material for the hybrid rocket, while preserving its cost-effective advantages as a special chemical motor. In this research, two types of carbon fiber reinforced composites, i.e. carbon/carbon (C/C) composite and Cf/C–SiC–ZrC composite utilized in high temperature environment, were employed to make the hybrid rocket nozzle. By comparison with the high-density graphite, the anti-ablation properties under the firing environment of Ф100mm H2O2-polyethylene hybrid rocket motor were characterized. We used whole felt preform to make C/C composite, whose matrix carbon was coming from chemical vapor infiltration of propylene; and the Cf/C–SiC–ZrC composite, which employs the same whole felt preform to make the low-density C/C billet, by infiltrated with Si and Zr organic precursors and pyrolysis at elevated temperatures repeatedly to make the advanced ceramic matrix composite. The firing test lasted 40s for all the candidate materials and the result indicated that the Cf/C–SiC–ZrC composite, whose average linear ablation rate was only 0.003 mm/s, was the most stable one in the firing environment. The SEM images gave detailed morphologies of those nozzle throat materials and proved that the fiber architecture, together with the glassy ceramic oxide, helped the nozzle to withstand the hybrid motor firing environment.  相似文献   

17.
The self-healing SiCf/SiC-SiBCN composites with various boron contents in SiBCN were prepared, and their long-term oxidation behaviors and strength retention properties were investigated. The 100 h oxidation at 1200–1350 °C leads to parabolic mass gain of the obtained composites. With the oxidation temperature increased from 1200 °C to 1350 °C, the oxidation rate constants increase from 5.91 × 10?8 mg2/(mm4 h) to 9.31 × 10?7 mg2/(mm4 h) for the boron-lean (3.14%) composites, and from 2.57 × 10?7 mg2/(mm4 h) to 6.04 × 10?7 mg2/(mm4 h) for the boron-rich (7.18 wt%) composites. Correspondingly, the oxidation activation energy decreases from 363 kJ/mol to 112 kJ/mol due to the low initial oxidation temperature of boron-rich SiBCN. All the composites exhibit the higher strength retention rates after 1350 °C oxidation due to the enhanced self-healing performance. The boron-rich composites show a high strength retention rate of up to 104% due to the good self-healing capacity of the boron-rich SiBCN as well as the high CVI-SiC content.  相似文献   

18.
In this paper, the boron-containing mesoporous bioactive glass (MBG) nanospheres have been successfully synthesized by modified sol-gel method assisted by surfactant, and the effect of boron substitution on structure and bioactivity was evaluated by combining experiments and ab initio molecular dynamics (AIMD) simulations. All of the samples exhibit regularly uniform mesoporous spherical microstructure with an average size of about 60 nm, and the boron-containing MBGs show higher specific surface area with the value up to 416.20 m2/g. The simulated body fluid (SBF) immersion test confirms that the deposited hydroxyapatite (HA) evidently increases with the increasing of boron content, indicating that the biological behavior has been significantly improved resulting from incorporation of boron. Additionally, our results also reveal that B2O3 substitution has positive impact on cell proliferation of human periodontal ligament cells (hPDLCs) at lower extracted concentration. Furthermore, AIMD simulation is employed to understand the relationship between structural changes and in vitro bioactivity in terms of structural information, especially the boron coordination number. The results illustrate that the boron-containing MBG nanospheres with excellent bioactivity are great potential for biomedical applications.  相似文献   

19.
Tantalum diboride – boron suboxide ceramic composites were densified by spark plasma sintering at 1900 °C. Strength and fracture toughness of these bulk composites at room temperature were 490 MPa and 4 MPa m1/2, respectively. Flexural strength of B6O–TaB2 ceramics increased up to 800 °C and remained unchanged up to 1600 °C. At 1800 °C a rapid decrease in strength down to 300 MPa was observed and was accompanied by change in fracture mechanisms suggestive of decomposition of boron suboxide grains. Fracture toughness of B6O–TaB2 composites showed a minimum at 800 °C, suggestive a relaxation of thermal stresses generated from the mismatch in coefficients of thermal expansion.Flexural strength at elevated temperatures for bulk TaB2 reference sample was also investigated.Results suggest that formation of composite provides additional strengthening/toughening as in all cases flexural strength and fracture toughness of the B6O–TaB2 ceramic composite was higher than that reported for B6O monoliths.  相似文献   

20.
Cf/SiC-ZrB2-TaxCy composite was synthesized by reactive hot pressing (RHP) of Cf cloth, polycarbosilane (PCS), ZrB2, and Ta powders at 4 MPa and 1200 °C. PIP cycle influenced sintering process by increasing density of the composite from 2.34 to 2.82 g/cc. Residual carbon produced during the PIP cycles at 1200 °C was utilized to yield TaxCy by the addition of Ta. SEM images illustrate that by increasing the number of PIP cycles, SiC derived from the PCS cover the Cf fibre, micropores, and cracks. PIP cycles and TaxCy phase improved flexural strength of the composite from 20 to 114 MPa. Mass and linear ablation resistance studies at 1600–2000 °C exhibited that oxide formation at the outer surface caused a barrier; further, no oxidation underneath the composite was observed. SEM images display that at 2000 °C, SiO2 and TaxOy were molten and sealed the pores. Hence, ablation resistance was enhanced by blocking the penetration in high-temperature flame.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号