首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2023,49(5):7223-7235
A novel double perovskite BaSrYZrO5.5:Eu3+ red-emitting phosphor was synthesized and characterized by XRD, SEM and PL analyses. The structure of the prepared phosphor was confirmed through JCPDS as well as Rietveld refinement analysis. The present phosphor shows an intense red emission at 613 nm when excited by 394 nm. The CIE colour coordinates value of BaSrYZrO5.5:Eu3+ (9 mol%) phosphor is found to be (0.6181, 0.3783) and it has high colour purity of 99.1%. The 613 nm transition integrated intensity of the present phosphor is 4.44 times higher compared to the commercial red phosphor. The thermal stability and Quantum yield of optimized BSYZ:Eu3+ (9 mol%) phosphor were also calculated. The BSYZ:Eu3+ phosphor results can be employed as an efficient red component in latent fingerprint detection and anti-counterfeiting applications.  相似文献   

2.
Eu3+ doped BaGd2ZnO5 phosphor was synthesized by a traditional solid-state reaction. The crystal structure of the product was characterized by means of X-ray diffraction (XRD). The ultraviolet (UV) and vacuum ultraviolet (VUV) photoluminescence properties of the phosphor were studied. Excitation spectra inferred that efficient energy transfer from Gd3+ to Eu3+ exists in the BaGd2ZnO5:Eu3+. The visible quantum cutting process based on the Gd3+–Eu3+ couple was observed in the BaGd2ZnO5:Eu3+ phosphor. Two-step energy transfer process from Gd3+ to Eu3+, viz. a cross-relaxation and a sequential transfer of the remaining excitation energy, is the mechanism responsible for visible quantum cutting in BaGd2ZnO5:Eu3+ phosphor. Quantum cutting efficiency in BaGd2ZnO5:Eu3+ was calculated to be around 133%.  相似文献   

3.
A reddish‐orange‐emitting SnO2:Eu3+ phosphor for field emission displays (FEDs) was successfully synthesized via a homogeneous precipitation route using urea as a precipitant. The influences of the dopant concentration of Eu3+ and calcination temperature on optical properties were investigated. The low‐voltage field emission properties of the FED device prepared using the synthesized SnO2:Eu3+ phosphors were reported. Under the UV light, SnO2:Eu3+ phosphors display the strong orange–red emission peaked at 587, 591, and 597 nm due to the 5D07F1 magnetic dipole transition of Eu3+. The phosphor doped with 1.0 mol% Eu3+ possesses the highest photoluminescent (PL) intensity. Under the low‐voltage excitation of 300 V, the fabricated FED device exhibits the bright orange–red emission, high‐voltage brightness saturation, and high color purity, which has a potential application in low‐voltage full color FEDs.  相似文献   

4.
《Ceramics International》2017,43(12):9084-9091
This paper reports the preparation of Eu3+ doped Gadolinium oxyorthosilicate (Gd2SiO5:Eu3+) phosphor with different concentration of Eu3+(0.1–2.5 mol%) using the modified solid state reaction method. The synthesis procedure of the Gd2SiO5:Eu3+phosphor using inorganic materials such as Gd2O3, silicon dioxide (SiO2), europium oxide (Eu2O3) and boric acid (H3BO3) as flux is discussed in detail. The prepared phosphor samples were characterized by using X-Ray Diffraction (XRD), Field Emission Gun Scanning Electron Microscopy (FEGSEM), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Photoluminescence (PL) and Thermoluminescence (TL). The Commission Internationale de l′Eclairage(CIE) coordinates were also calculated. The PL emission was observed in the 350–630 nm range for the Gd2SiO5:Eu3+ phosphor. PL excitation peaks were observed at 266, 275, 312 and 395 nm while the emission peaks were observed at 380, 416, 437, 545, 579, 589, 607, 615 and 628 nm. The emission peak at 615 nm was the most intense peak for all the different Eu3+ concentration samples. From the XRD data, using the Scherrer's formula, the average crystallite size of the Gd2SiO5:Eu3+ phosphor was calculated to be 33 nm. TL was carried out for the phosphor after both UV and gamma irradiation. The TL response of the Gd2SiO5:Eu3+ phosphor for the two different radiations was compared and studied in detail. It was found that the present phosphor can acts as a single host for red emission (1.5 mol%) for display devices and light emitting diode (LED) and white light emission for Eu3+(0.1 mol%) and it might be used as a TL dosimetric material for gamma dose detection.  相似文献   

5.
《Ceramics International》2017,43(13):9838-9845
The structural and luminescent properties of Eu3+ doped TiO2 nanophosphors synthesized by low cost combustion method were investigated. The X-ray diffraction analysis revealed that crystallite size decreases with doping concentration. Lattice volume expansion occurred due to the substitution of Ti4+ ions by larger ionic radii ions Eu3+. FESEM images showed prepared phosphors to be nano size spherical shaped particles. Energy band gap of 3 mol% Eu3+ doped samples decreased to 3.15 eV due to doping effect. The Eu3+ doped TiO2 nanophosphors exhibited main red emission peak centered at 616 nm under 395 nm UV light excitation. Concentration quenching was observed at 3 mol% doping, that has been ascribed to dipole-dipole interaction. The covalent nature of Eu-O bond and environment around Eu3+ ions were discussed using Judd-Ofelt (J-O) intensity parameters. Internal quantum efficiency was calculated using excited state lifetime 5D0 state of Eu3+ ion and J-O theory. The CIE colour coordinates and colour purity were calculated using the spectral energy distribution function. Low excited state life time indicated that Eu3+ doped TiO2 can be used as red emitting phosphor for white light emitting diode applications.  相似文献   

6.
《Ceramics International》2023,49(7):10615-10624
Red phosphor plays a key role in improving the lighting and display quality of phosphor-converted white light-emitting diodes (pc-WLEDs). Meanwhile, developing new luminescent matrix materials can positively contribute to the acquisition of ideal and efficient phosphors. In this work, we propose a novel red-emitting Na5W3O9F5:Eu3+ (NWOF:Eu3+) phosphor. The phase composition, morphology, electronic structure and photoluminescence properties of the NWOF:Eu3+ phosphor were systematically investigated. The EXAFS results prove that the Eu3+ dopants occupy the Na2 and Na3 sites in the NWOF host. Under 466 nm blue light excitation, NWOF:xEu3+ (0.05 ≤ x ≤ 0.25) phosphors display a dominant red emission at 607 nm and achieves a high color purity (97.44%) due to the dominant electric dipole transition (5D07F2) of Eu3+ ions. Impressively, this red-emitting NWOF:0.25Eu3+ phosphor exhibits relatively superior thermal stability (450 K, >50%) and excellent chromaticity stability (2.32 × 10?4 ≤ ΔE ≤ 6.23 × 10?3) from 298 K to 498 K. The activation energy for thermal quenching effect is determined to be 0.22 eV. Moreover, the pc-WLED was fabricated by coupling a 460 nm blue chip with the as-synthesized NWOF:0.25Eu3+ red phosphor and commercial YAG:Ce3+ phosphor. The optical parameters of the as-fabricated pc-WLED are also measured, and the CIE coordinates remain almost constant as the drive current increases from 20 mA to 120 mA. These results indicate that the NWOF:0.25Eu3+ red phosphors should be a suitable candidate as a red component for the preparation of pc-WLEDs.  相似文献   

7.
LiCaAlN2:Eu3+/Tb3+ red/green phosphors were successfully prepared by conventional solid‐state reaction. The photoluminescence (PL) properties and cathodoluminescence (CL) properties of LiCaAlN2:Eu3+/Tb3+ were investigated in detail. The Eu3+ (Tb3+) doped LiCaAlN2 shows red (green) emission peaking at 615 nm (550 nm). Monitored at 615 nm (550 nm), it is interesting to found that LiCaAlN2:Eu3+ (LiCaAlN2:Tb3+) has a broad charge transfer transition in the range of 350‐450 nm (275‐375 nm) peaking at 380 nm (343 nm), which can be efficiently excited by n‐UV light‐emitting diodes (LEDs). Under electron beam excitation, LiCaAlN2:Tb3+ exhibited a good resistance to the current saturation. The white LED has also been fabricated with blue, green, and LiCaAlN2:Eu3+ red phosphor. The results indicate that LiCaAlN2:Eu3+/Tb3+ could be conducive to the development of phosphor‐converted LEDs and field emission displays (FEDs).  相似文献   

8.
Developing narrowband red phosphors has always been a frontier topic in the phosphor community. In this study, a novel hafnium germanate red phosphor, BaHfGe3O9:Eu3+, was successfully synthesized by solid-state reaction method. The phase and crystal structure of BaHfGe3O9 were investigated by the Rietveld refinement of powder X-ray powder diffraction. The band structure was analyzed by density functional theory calculations. Most importantly, the luminescence behavior of phosphors under near-ultraviolet (n-UV) light and cathode rays sources was studied in detail to explore the possibility of their applications in white light-emitting diodes and field emission display. The BaHfGe3O9:Eu3+ phosphor exhibits strong f–f excitation and excellent thermal robustness due to Eu3+ localization in the rigid lattice and asymmetric Ba2+ sites. Under cathode rays and n-UV light excitation, BaHfGe3O9:Eu3+ exhibits narrowband red light emission peaked at 610 nm. Moreover, BaHfGe3O9:Eu3+ shows excellent saturation resistance and aging resistance. The performance of the LED lamp encapsulated by the BaHfGe3O9:Eu3+ phosphor was studied. The results show that BaHfGe3O9:Eu3+ is a potential red phosphor for multifunctional applications.  相似文献   

9.
《Ceramics International》2017,43(16):13569-13575
The phosphor-in-glass (PiG) coating was fabricated via multilayer screen-printing and low-temperature sintering. The PiG coating consisted of Eu2O3-doped P2O5-ZnO-B2O3 (PZB) glass, Y3Al5O12:Ce3+ (YAG:Ce) yellow phosphor, and CaAlSiN3:Eu2+ (CASN:Eu) red phosphor. Eu2O3 and CASN:Eu were used to provide red emission for tunable chromaticity of white light-emitting diodes (LEDs), and surprisingly, the luminous efficacy was also enhanced. The impact of the variation in the B2O3 content on the PZB glass and the effect of Eu2O3, YAG: Ce, and CASN:Eu on the luminescent properties of the PiG coating were investigated. The glass matrix with 8 mol% B2O3 showed the lowest transition temperature and a suitable coefficient of thermal expansion. The spectra showed that the coating can be excited by blue light and produce yellow light and red light. The spatial distribution of the PiG coating was inspected by scanning electron microscopy, and it was observed that only a low erosion of phosphor by the glass matrix occurred. Furthermore, the white LEDs devices were constructed with the PiG coating on the blue LED chips. This method showed a decreased correlated colour temperature of 5137, a increased colour rendering index of 82.8 and an improvement in the luminous efficacy. The PiG coating for tunable chromaticity and enhanced luminous efficacy of white LEDs shows potential for application.  相似文献   

10.
《Ceramics International》2023,49(10):15402-15412
A series of Ca2GdNbO6: xSm3+ (0.01 ≤ x ≤ 0.15) and Ca2GdNbO6: 0.03Sm3+, yEu3+ (0.05 ≤ y ≤ 0.3) phosphors were synthesized by the traditional solid-state sintering process. XRD and the corresponding refinement results indicate that both Sm3+ and Eu3+ ions are doped successfully into the lattice of Ca2GdNbO6. The micro-morphology shows that the elements of Ca2GdNbO6: 0.03Sm3+, 0.2Eu3+ phosphor are evenly distributed in the sample, and the particle size is about 2 μm. The optical properties and fluorescence lifetime of Ca2GdNbO6: 0.03Sm3+, Eu3+ phosphors were detailedly studied. The emission peak at 5D07F2 (614 nm) is the strongest and emits red light under 406 nm excitation. The increase of Eu3+ concentration causes the energy transfers from Sm3+ to Eu3+ ions, and the transfer efficiency reaches 28.6%. Ca2GdNbO6: 0.03Sm3+, 0.2Eu3+ phosphor has a quantum yield of about 82.7%, and thermal quenching activation energy is of 0.312 eV. The color coordinate (0.646, 0.352) of Ca2GdNbO6: 0.03Sm3+, 0.2Eu3+ phosphors is located in the red area. The LED device fabricated based on the above phosphor emit bright white light, and CCT = 5400 K, Ra = 92.8. The results present that Ca2GdNbO6: 0.03Sm3+, Eu3+ phosphors potentially find use in the future.  相似文献   

11.
A novel red-emitting phosphor Ca5Ga6O14:Eu3+ has been synthesized using solid-state method. The excitation and emission spectra show that the phosphor can emit the red light with the main peak at 611 nm under excitation of the 280 and 393 nm UV chip and the optimal Eu3+ concentration is determined to be x = 0.07. Analysis of emission spectrum shows that Eu3+ occupy the center of noninversion symmetry. With the increase of Eu3+ doping concentration, the decay time is prolonged due to deeper energy trap arising from nonequivalent substitution. Additionally, the measured thermal stability with 0.539 eV activation energy and calculated 90.5% color purity of optimal phosphor indicate that the phosphor has an enormous application potential in w-LEDs industry.  相似文献   

12.
In this work, a new red phosphor with high color purity, Eu3+ ions doped Ba(Mg1/3Nb2/3)O3 phosphor has been prepared by wet chemical method. The structure analysis suggests BMN:x%Eu phosphors have a hexagonal phase and Ba2+ ions are replaced by Eu3+ ions in BMN. Upon excitation of NUV light, the BMN:x%Eu phosphors emit strong red light around 615?nm, derived from the 5D0-7F2 transition of Eu3+ ions. The relationship between luminescent properties and structure of BMN:x%Eu was discussed. The Judd-Ofelt intensity parameters (Ω2, Ω4) were calculated to analyze the asymmetry of the Eu3+ ions site occupancy further, and the quantum efficiency of BMN:3%Eu was found to be 77.26%. In addition, the decay curve indicates the decay time(τ) of BMN:3%Eu is determined to be 1.34?ms and Eu3+ ions occupy only one type of site. The CIE chromaticity coordinate (0.656,0.344) of BMN:3%Eu is quite close to the red phosphors standard value (0.670, 0.330), which indicates BMN:x%Eu can be a suitable red phosphor used in NUV-based white LEDs.  相似文献   

13.
The red emission with suitable peak wavelength and narrow band is acutely required for high color rendering index (CRI) white LEDs without at the cost of the luminous efficacy. Herein, the Li2Ca2Mg2Si2N6:Eu2+ red phosphor was prepared with facile solid-state method using Ca3N2, Mg3N2, Si3N4, Li3N, and Eu2O3 as the safety raw materials under atmospheric pressure for the first time, which shows red emission peaking at 638 nm with full width at half maximum (FWHM) of 62 nm under blue light irradiation and becomes the desired red phosphor to realize the balance between luminous efficacy and high CRI in white LEDs. The morphology, structure, luminescence properties, thermal quenching behavior, and chromaticity stability of the Li2Ca2Mg2Si2N6:Eu2+ phosphor are investigated in detail. Concentration quenching occurs when the Eu2+ content exceeds 1.0 mol%, whereas high-temperature photoluminescent measurements show a 32% drop from the room-temperature efficiency at 423 K. In view of the excellent luminescence performances of Li2Ca2Mg2Si2N6:Eu2+ phosphor, a white LEDs with CRI of 91 as a proof-of-concept experiment was fabricated by coating the title phosphor with Y3Al5O12:Ce3+ on a blue LED chip. In addition, the potential application of the title phosphor in plant growth LED device was also demonstrated. All the results indicate that Li2Ca2Mg2Si2N6:Eu2+ is a promising red-emitting phosphor for blue LED-based high CRI white LEDs and plant growth lighting sources.  相似文献   

14.
A series of LiCaGd(WO4)3 : xEu3+ (0 ≤ x ≤ 1.0) red phosphors with tetragonal scheelite structure were synthesized via the conventional solid-state reaction. Their crystal structure, photoluminescence excitation (PLE), and photoluminescence (PL) spectra, thermal stability and quantum efficiency were investigated. The phosphors exhibit a typical red light upon 395 nm near ultraviolet excitation, and the strongest emission peak at 617 nm is dominated by the 5D07F2 transition of Eu3+ ions. The PL intensity of the phosphors gradually increases with the increase of Eu3+ doping concentration, and the concentration quenching phenomenon is hardly observed. The quantum efficiency and the color purity of the phosphor reach maximum values of about 94.2 and 96.6% at x = 1.0, respectively. More importantly, LiCaGd(WO4)3:xEu3+ phosphors have prominent thermal stability. The temperature-dependent PL intensity of the phosphors at 423 K is only reduced to 89.1% of the PL intensity at 303 K, which is superior to that of commercial red phosphors Y2O3:Eu3+. Finally, LiCaGd(WO4)3:Eu3+ phosphor is packaged with near ultraviolet InGaN chips to fabricate white light emitting diodes, which has a low color temperature (CCT = 4622 K) and a high color rendering index (CRI= 89.6).  相似文献   

15.
《Ceramics International》2022,48(24):36706-36714
A single-component Ca3YAl3B4O15 (CYAB):Dy3+, Eu3+ phosphor was synthesized by the traditional high temperature solid-phase method, Dy3+ and Eu3+ were codoped in the structure to obtain a warm white emission. The results of XRD and EDS revealed that all samples had the standard Ca3YAl3B4O15 structure, and no impurity phase appeared with codoping. The emission of Dy3+ in CYAB consisted of both main peaks at 476 nm and 570 nm, with which a white emission could be observed. Furthermore, a characteristic emission peak of Eu3+ appeared at 617 nm in Dy3+/Eu3+-codoped samples to supplement red component for the white emission of Dy3+, due to the energy transfer effect between Dy3+ and Eu3+. With the amount of Eu3+ raised, the correlated colour temperature of CYAB:Dy3+, Eu3+ phosphor obviously decreased, and a warm white light was successfully realized from the manufactured w-LEDs. Therefore, all results indicated that the single-component Dy3+/Eu3+ codoped CYAB white-emitting phosphor had a potential application in ultraviolet excited w-LEDs.  相似文献   

16.
A series of Ca5(PO4)3F:Dy3+, Eu3+ phosphors was synthesized by a solid‐state reaction method. The XRD results show that all as‐prepared Ca5(PO4)3F:Dy3+, Eu3+ samples match well with the standard Ca5(PO4)3F structure and the doped Dy3+ and Eu3+ ions have no effect on the crystal structure. Under near‐ultraviolet excitation, Dy3+ doped Ca5(PO4)3F phosphor shows blue (486 nm) and yellow (579 nm) emissions, which correspond to 4F9/26H15/2 and 4F9/26H13/2 transitions respectively. Eu3+ co‐doped Ca5(PO4)3F:Dy3+ phosphor shows the additional red emission of Eu3+ at 631 nm, and an improved color rendering index. The chromaticity coordinates of Ca5(PO4)3F:Dy3+, Eu3+ phosphors also indicate the excellent warm white emission characteristics and low correlated color temperature. Overall, these results suggest that the Ca5(PO4)3F:Dy3+, Eu3+ phosphors have potential applications in warm white light‐emitting diodes as single‐component phosphor.  相似文献   

17.
A new method for improving color rendering index (CRI) and low correlated color temperature (CCT) in high‐power white‐light‐emitting diodes (WLEDs) is proposed. We used a configuration of phosphor‐in‐glass (PIG) and studied light output changes with the increment in concentration of yellow‐emitting Y3Al5O12:Ce3+ (YAG:Ce3+) phosphor. The PIG was coupled on the top of blue‐light‐emitting diodes (LED) chip (465 nm). To compensate the lack of red emission in the phosphor, Eu3+‐doped tellurium glass with different europium content was employed as a red emitter. The suitable contents of YAG:Ce3+ and Eu3+ were 7.5 weight percent (wt%) and 3 mol percent (mol%), respectively. The CRI value went from 72 to 82, whereas the CCT was reduced from 24 933 to 6434 K. The proposed structure can improve CCT as well as CRI of WLEDs just by placing a glass on top.  相似文献   

18.
《Ceramics International》2016,42(16):18536-18546
In the present paper, an investigation on the structural and photoluminescence (PL) properties of SrGd2O4:Eu3+ ceramic phosphors synthesized by homogeneous precipitation method followed by combustion process has been reported. The samples, annealed at 1200 °C, were crystallized into orthorhombic phase without any impurities. Microscopic studies revealed the irregular morphology of the obtained ceramic phosphor particles having sizes in the range of 0.3–3 µm. The characteristic photoluminescence properties and decay curves were studied in detail as a function of Eu3+ concentration and temperature. The Eu3+ doped ceramic samples illuminated with UV light revealed the characteristic red luminescence corresponding to 5D07FJ transitions of Eu3+. The concentration quenching phenomenon of Eu3+ ions in the present host, analyzed in the light of ion-ion interaction, indicated multipolar interaction between Eu3+ ions. Finally, the intensity parameters (Ω2, Ω4) and various radiative properties such as stimulated emission cross-section (σe), gain band-width (σe×Δλeff) and optical gain (σe×τexp) of Eu3+ in the SrGd2O4 ceramic phosphors have been calculated by using Judd-Ofelt theory. The present phosphor system exhibited efficient red emission with high red color purity (95%) and adequate thermal stability even at 200 °C. Present research broadly indicated the suitability of SrGd2O4:Eu3+ ceramic phosphor for display applications.  相似文献   

19.
《Ceramics International》2022,48(16):23213-23223
Red phosphors with a high quantum yield and a lower thermal quenching are needed to improve the luminescence efficiency and the stability of phosphor-converted white light-emitting diodes (pc-WLEDs). We have designed a high quantum yield NaGdSiO4 (NGSO) based phosphor with enhanced Eu3+ emissions of the 5D07F1 and 5D07F2 transitions. This design is based on the Eu3+ at both the inversion and non-inversion symmetry sites. In detail, we have studied the structure, morphology, and luminescence properties of NGSO: Eu3+ phosphors. Using a 394 nm UV excitation, a series of Eu3+ emissions of 5D07FJ (0–4) transitions has been observed. The internal quantum efficiency (IQE) is 83.42% and the red color purity is 91.4%. These values are much higher than some reported results. The higher IQE and double intense 5D07F1 and 5D07F2 emissions might originate from an unusual structure disorder around Eu3+ ions in the NGSO lattice. The lifetime of the optimal phosphor NGSO: 0.5Eu3+ is about 2 ms, suitable for solid-state lighting. The intensities of the strong emissions at 595 and 624 nm of NGSO: 0.5Eu3+ at 150 °C is about 85% of that at 30 °C, demonstrating its excellent thermal stability. Furthermore, this red NGSO: 0.5Eu3+ phosphor was packaged into a warm pc-WLED, exhibiting a lower correlated color temperature (CCT) of 4222 K and a comparable color rendering index (CRI) of 86.7. These results show that this red phosphor could act as a red component of pc-WLEDs excited by the n-UV LED chip.  相似文献   

20.
Luminescent yttrium aluminum garnet (Y3Al5O12) nanoparticles doped with Eu (YAG:Eu3+) were continuously synthesized by directly feeding potassium hydroxide solution and metal salt solution to supercritical water (SCW). Effects of Eu concentration, pH, and residence time on photo-luminescence were studied using a continuous tubular reactor. Residence time played a key role in producing single-phase YAG:Eu3+ nanoparticles. The residence time of 20 s under SCW conditions (400 °C and 280 bar) was enough to form YAG:Eu3+ phosphor without any intermediate phases. At this residence time, the Eu concentration and pH condition under SCW contributed to improving the size, morphology and luminescent property of YAG: Eu3+ nanoparticles. The average size of the prepared phosphor nanoparticles at 10 at.% and pH of 9.10 was 74 nm and the morphology was identified as nearly uniform and spherical-like in shape. Without further thermal treatment, the phosphor YAG:Eu3+ synthesized in the continuous reactor under SCW conditions showed strong luminescence properties and red emission spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号