首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Recessive variants of the SLC26A4 gene are globally a common cause of hearing impairment. In the past, cell lines and transgenic mice were widely used to investigate the pathogenicity associated with SLC26A4 variants. However, discrepancies in pathogenicity between humans and cell lines or transgenic mice were documented for some SLC26A4 variants. For instance, the p.C565Y variant, which was reported to be pathogenic in humans, did not exhibit functional pathogenic consequences in cell lines. To address the pathogenicity of p.C565Y, we used a genotype-based approach in which we generated knock-in mice that were heterozygous (Slc26a4+/C565Y), homozygous (Slc26a4C565Y/C565Y), and compound heterozygous (Slc26a4919-2A>G/C565Y) for this variant. Subsequent phenotypic characterization revealed that mice with these genotypes demonstrated normal auditory and vestibular functions, and normal inner-ear morphology and pendrin expression. These findings indicate that the p.C565Y variant is nonpathogenic for mice, and that a single p.C565Y allele is sufficient to maintain normal inner-ear physiology in mice. Our results highlight the differences in pathogenicity associated with certain SLC26A4 variants between transgenic mice and humans, which should be considered when interpreting the results of animal studies for SLC26A4-related deafness.  相似文献   

2.
Bernard-Soulier syndrome (BSS) is an autosomal-recessive bleeding disorder caused by biallelic variants in the GP1BA, GP1BB, and GP9 genes encoding the subunits GPIbα, GPIbβ, and GPIX of the GPIb-IX complex. Pathogenic variants usually affect the extracellular or transmembrane domains of the receptor subunits. We investigated a family with BSS caused by the homozygous c.528_550del (p.Arg177Serfs*124) variant in GP1BB, which is the first mutation ever identified that affects the cytoplasmic domain of GPIbβ. The loss of the intracytoplasmic tail of GPIbβ results in a mild form of BSS, characterized by only a moderate reduction of the GPIb-IX complex expression and mild or absent bleeding tendency. The variant induces a decrease of the total platelet expression of GPIbβ; however, all of the mutant subunit expressed in platelets is correctly assembled into the GPIb-IX complex in the plasma membrane, indicating that the cytoplasmic domain of GPIbβ is not involved in assembly and trafficking of the GPIb-IX receptor. Finally, the c.528_550del mutation exerts a dominant effect and causes mild macrothrombocytopenia in heterozygous individuals, as also demonstrated by the investigation of a second unrelated pedigree. The study of this novel GP1BB variant provides new information on pathophysiology of BSS and the assembly mechanisms of the GPIb-IX receptor.  相似文献   

3.
The small Ras-related GTPase Rab-28 is highly expressed in photoreceptor cells, where it possibly participates in membrane trafficking. To date, six alterations in the RAB28 gene have been associated with autosomal recessive cone-rod dystrophies. Confirmed variants include splicing variants, missense and nonsense mutations. Here, we present a thorough phenotypical and genotypical characterization of five individuals belonging to four Italian families, constituting the largest cohort of RAB28 patients reported in literature to date. All probands displayed similar clinical phenotype consisting of photophobia, decreased visual acuity, central outer retinal thinning, and impaired color vision. By sequencing the four probands, we identified: a novel homozygous splicing variant; two novel nonsense variants in homozygosis; a novel missense variant in compound heterozygous state with a previously reported nonsense variant. Exhaustive molecular dynamics simulations of the missense variant p.(Thr26Asn) in both its active and inactive states revealed an allosteric structural mechanism that impairs the binding of Mg2+, thus decreasing the affinity for GTP. The impaired GTP-GDP exchange ultimately locks Rab-28 in a GDP-bound inactive state. The loss-of-function mutation p.(Thr26Asn) was present in a compound heterozygosis with the nonsense variant p.(Arg137*), which does not cause mRNA-mediated decay, but is rather likely degraded due to its incomplete folding. The frameshift p.(Thr26Valfs4*) and nonsense p.(Leu13*) and p.(Trp107*) variants, if translated, would lack several key structural components necessary for the correct functioning of the encoded protein.  相似文献   

4.
The aim of this study was to analyze the biological role of different transforming growth factor-β (TGFβ) receptor splice variants in ovarian carcinoma (OC). Specific receptor variant knockouts (KO) were prepared using the CRISPR/Cas9 genome editing system in two OC cell lines, TβRI variant 1 (TβRIv1) KO in ES-2 cells and TβRII variant 1 (TβRIIv1) KO in OVCAR-8 cells. Control and KO cells were compared by proteomic analysis, functional tests, analysis of epithelial–mesenchymal transition (EMT) drivers, and Western blot of signaling proteins. Proteomic analysis revealed significant changes in protein pathways in the KO cells. TβRIv1 KO resulted in a significant reduction in both cellular motility and invasion, while TβRIIv1 KO significantly reduced cellular motility and increased Reactive Oxygen Species (ROS) production. Both receptor variant KOs reduced MET protein levels. Of the EMT drivers, a significant decrease in TWIST protein expression, and increase in SNAIL protein and MALAT1 mRNA levels were observed in the TβRIIv1 KO compared to control. A significant decrease in JNK1 and JNK2 activation was found in the TβRIv1 KO compared to control cells. These findings provide new insight regarding the biological role of the TGFβ receptor variants in the biology and potentially the progression of OC.  相似文献   

5.
RASGRP2 encodes the calcium and diacylglycerol (DAG)-regulated guanine nucleotide exchange factor I (CalDAG-GEFI) identified as a Rap1-activating molecule. Pathogenic variants previously identified in RASGRP2 allowed the characterization of CalDAG-GEFI deficiency as a non-syndromic, autosomal recessive platelet function disease. We report on the clinical manifestations and laboratory features of a Portuguese family with a likely pathogenic variant in RASGRP2 (c.999G>C leading to a p.Lys333Asn change in the CDC25 catalytic domain of CalDAG-GEFI) and discuss the contribution of this variant to the disease manifestations. Based on the study of this family with one homozygous patient and five heterozygous carriers and on a critical analysis of the literature, we challenge previous knowledge that CalDAG-GEFI deficiency only manifests in homozygous patients. Our data suggest that at least for the RASGRP2 variant reported herein, there is a phenotypic expression, albeit milder, in heterozygous carriers.  相似文献   

6.
We report on a patient born to consanguineous parents, presenting with Growth Hormone Deficiency (GHD) and osteoporosis. SNP-array analysis and exome sequencing disclosed long contiguous stretches of homozygosity and two distinct homozygous variants in HESX1 (Q6H) and COL1A1 (E1361K) genes. The HESX1 variant was described as causative in a few subjects with an incompletely penetrant dominant form of combined pituitary hormone deficiency (CPHD). The COL1A1 variant is rare, and so far it has never been found in a homozygous form. Segregation analysis showed that both variants were inherited from heterozygous unaffected parents. Present results further elucidate the inheritance pattern of HESX1 variants and recommend assessing the clinical impact of variants located in C-terminal propeptide of COL1A1 gene for their potential association with rare recessive and early onset forms of osteoporosis.  相似文献   

7.
The majority of the human proteome is subjected to N-terminal (Nt) acetylation catalysed by N-terminal acetyltransferases (NATs). The NatA complex is composed of two core subunits—the catalytic subunit NAA10 and the ribosomal anchor NAA15. Furthermore, NAA10 may also have catalytic and non-catalytic roles independent of NatA. Several inherited and de novo NAA10 variants have been associated with genetic disease in humans. In this study, we present a functional analysis of two de novo NAA10 variants, c.29A>G p.(D10G) and c.32T>G p.(L11R), previously identified in a male and a female, respectively. Both of these neighbouring amino acids are highly conserved in NAA10. Immunoprecipitation experiments revealed that both variants hamper complex formation with NAA15 and are thus likely to impair NatA-mediated Nt-acetylation in vivo. Despite their common impact on NatA formation, in vitro Nt-acetylation assays showed that the variants had opposing impacts on NAA10 catalytic activity. While NAA10 c.29A>G p.(D10G) exhibits normal intrinsic NatA activity and reduced monomeric NAA10 NAT activity, NAA10 c.32T>G p.(L11R) displays reduced NatA activity and normal NAA10 NAT activity. This study expands the scope of research into the functional consequences of NAA10 variants and underlines the importance of understanding the diverse cellular roles of NAA10 in disease mechanisms.  相似文献   

8.
9.
Mutations in POC1B are a rare cause of inherited retinal degeneration. In this study, we present a thorough phenotypic and genotypic characterization of three individuals harboring putatively pathogenic variants in the POC1B gene. All patients displayed a similar, slowly progressive retinopathy (cone dystrophy or cone-rod dystrophy) with normal funduscopy but disrupted outer retinal layers on optical coherence tomography and variable age of onset. Other symptoms were decreased visual acuity and photophobia. Whole genome sequencing revealed a novel homozygous frameshift variant in one patient. Another patient was shown to harbor a novel deep intronic variant in compound heterozygous state with a previously reported canonical splice site variant. The third patient showed a novel nonsense variant and a novel non-canonical splice site variant. We aimed to validate the effect of the deep intronic variant and the non-canonical splice site variant by means of in vitro splice assays. In addition, direct RNA analysis was performed in one patient. Splicing analysis revealed that the non-canonical splice site variant c.561-3T>C leads to exon skipping while the novel deep intronic variant c.1033-327T>A causes pseudoexon activation. Our data expand the genetic landscape of POC1B mutations and confirm the benefit of genome sequencing in combination with downstream functional validation using minigene assays for the analysis of putative splice variants. In addition, we provide clinical multimodal phenotyping of the affected individuals.  相似文献   

10.
Schimke immuno-osseous dysplasia (SIOD) is a rare multisystemic disorder with a variable clinical expressivity caused by biallelic variants in SMARCAL1. A phenotype–genotype correlation has been attempted and variable expressivity of biallelic SMARCAL1 variants may be associated with environmental and genetic disturbances of gene expression. We describe two siblings born from consanguineous parents with a diagnosis of SIOD revealed by whole exome sequencing (WES). Results: A homozygous missense variant in the SMARCAL1 gene (c.1682G>A; p.Arg561His) was identified in both patients. Despite carrying the same variant, the two patients showed substantial renal and immunological phenotypic differences. We describe features not previously associated with SIOD—both patients had congenital anomalies of the kidneys and of the urinary tract and one of them succumbed to a classical type congenital mesoblastic nephroma. We performed an extensive characterization of the immunophenotype showing combined immunodeficiency characterized by a profound lymphopenia, lack of thymic output, defective IL-7Rα expression, and disturbed B plasma cells differentiation and immunoglobulin production in addition to an altered NK-cell phenotype and function. Conclusions: Overall, our results contribute to extending the phenotypic spectrum of features associated with SMARCAL1 mutations and to better characterizing the underlying immunologic disorder with critical implications for therapeutic and management strategies.  相似文献   

11.
Variants of NR5A1 are often found in individuals with 46,XY disorders of sex development (DSD) and manifest with a very broad spectrum of clinical characteristics and variable sex hormone levels. Such complex phenotypic expression can be due to the inheritance of additional genetic hits in DSD-associated genes that modify sex determination, differentiation and organ function in patients with heterozygous NR5A1 variants. Here we describe the clinical, biochemical and genetic features of a series of seven patients harboring monoallelic variants in the NR5A1 gene. We tested the transactivation activity of novel NR5A1 variants. We additionally included six of these patients in a targeted diagnostic gene panel for DSD and identified a second genetic hit in known DSD-causing genes STAR, AMH and ZFPM2/FOG2 in three individuals. Our study increases the number of NR5A1 variants related to 46,XY DSD and supports the hypothesis that a digenic mode of inheritance may contribute towards the broad spectrum of phenotypes observed in individuals with a heterozygous NR5A1 variation.  相似文献   

12.
The 15q11.2 BP1-BP2 deletion (Burnside-Butler) syndrome is emerging as the most common cytogenetic finding in patients with neurodevelopmental or autism spectrum disorders (ASD) presenting for microarray genetic testing. Clinical findings in Burnside-Butler syndrome include developmental and motor delays, congenital abnormalities, learning and behavioral problems, and abnormal brain findings. To better define symptom presentation, we performed comprehensive cognitive and behavioral testing, collected medical and family histories, and conducted clinical genetic evaluations. The 15q11.2 BP1-BP2 region includes the TUBGCP5, CYFIP1, NIPA1, and NIPA2 genes. To determine if additional genomic variation outside of the 15q11.2 region influences expression of symptoms in Burnside-Butler syndrome, whole-exome sequencing was performed on the parents and affected children for the first time in five families with at least one parent and child with the 15q1l.2 BP1-BP2 deletion. In total, there were 453 genes with possibly damaging variants identified across all of the affected children. Of these, 99 genes had exclusively de novo variants and 107 had variants inherited exclusively from the parent without the deletion. There were three genes (APBB1, GOLGA2, and MEOX1) with de novo variants that encode proteins evidenced to interact with CYFIP1. In addition, one other gene of interest (FAT3) had variants inherited from the parent without the deletion and encoded a protein interacting with CYFIP1. The affected individuals commonly displayed a neurodevelopmental phenotype including ASD, speech delay, abnormal reflexes, and coordination issues along with craniofacial findings and orthopedic-related connective tissue problems. Of the 453 genes with variants, 35 were associated with ASD. On average, each affected child had variants in 6 distinct ASD-associated genes (x¯ = 6.33, sd = 3.01). In addition, 32 genes with variants were included on clinical testing panels from Clinical Laboratory Improvement Amendments (CLIA) approved and accredited commercial laboratories reflecting other observed phenotypes. Notably, the dataset analyzed in this study was small and reported results will require validation in larger samples as well as functional follow-up. Regardless, we anticipate that results from our study will inform future research into the genetic factors influencing diverse symptoms in patients with Burnside-Butler syndrome, an emerging disorder with a neurodevelopmental behavioral phenotype.  相似文献   

13.
CILK1 (ciliogenesis associated kinase 1)/ICK (intestinal cell kinase) is a highly conserved protein kinase that regulates primary cilia structure and function. CILK1 mutations cause a wide spectrum of human diseases collectively called ciliopathies. While several CILK1 heterozygous variants have been recently linked to juvenile myoclonic epilepsy (JME), it remains unclear whether these mutations cause seizures. Herein, we investigated whether mice harboring either a heterozygous null Cilk1 (Cilk1+/−) mutation or a heterozygous loss-of-function Cilk1 mutation (Cilk1R272Q/+) have epilepsy. We first evaluated the spontaneous seizure phenotype of Cilk1+/− and Cilk1R272Q/+ mice relative to wildtype littermates. We observed no electrographic differences among the three mouse genotypes during prolonged recordings. We also evaluated electrographic and behavioral responses of mice recovering from isoflurane anesthesia, an approach recently used to measure seizure-like activity. Again, we observed no electrographic or behavioral differences in control versus Cilk1+/− and Cilk1R272Q/+ mice upon isoflurane recovery. These results indicate that mice bearing a non-functional copy of Cilk1 fail to produce electrographic patterns resembling those of JME patients with a variant CILK1 copy. Our findings argue against CILK1 haploinsufficiency being the mechanism that links CILK1 variants to JME.  相似文献   

14.
Cerebral amyloid angiopathy (CAA) is a cerebrovascular disorder caused by the deposition of amyloid beta-peptide (Aβ) aggregates. Aβ aggregates lead to vessel rupture and intracerebral hemorrhages, detected by magnetic resonance imaging (MRI). Presenile CAA is usually genetically determined by mutations in the amyloid precursor protein (APP) gene. However, mutations after codon 200 in the presenilin 1 (PSEN1) gene have been reported to facilitate CAA onset. Here, we analyzed the genetic bases in a patient of 55 years old affected by CAA and cognitive decline. DNA was isolated and genetic analysis was performed by Next-Generation Sequencing (NGS). RNA was extracted and retro-transcribed to perform segregation analysis by TOPO-TA cloning. WB analysis was carried out to check the impact of the mutations on protein. Two compound heterozygous mutations in PSEN1 exon 10, such as a novel stop-gain mutation (c.1070C > G) and a pathogenic splice variant (c.1129A > T), were found by NGS. Both mutations altered the presenilin 1 protein, truncating its C-terminal portion. This is the first case of CAA and cognitive decline caused by two compound mutations in PSEN1. With this report, we suggest extending the genetic analysis to PSEN1 when cerebral microbleeds are observed by MRI investigation in a patient affected by presenile cognitive decline.  相似文献   

15.
A forward genetic approach is a powerful tool for identifying the genes underlying the phenotypes of interest. However, the conventional map-based cloning method is lengthy, requires a large mapping population and confirmation of many candidate genes in a broad genetic region to clone the causal variant. The whole-genome sequencing method clones the variants with a certain failure probability for multiple reasons, especially for heterozygotes, and could not be used to clone the mutation of epigenetic modifications. Here, we applied the highly complementary characteristics of these two methods and developed a sequencing-based mapping method (SBM) for identifying the location of plant variants effectively with a small population and low cost, which is very user-friendly for most popular laboratories. This method used the whole-genome sequencing data of two pooled populations to screen out enough markers. These markers were used to identify and narrow the candidate region by analyzing the marker-indexes and recombinants. Finally, the possible mutational sites were identified using the whole-genome sequencing data and verified in individual mutants. To elaborate the new method, we displayed the cloned processes in one Arabidopsis heterozygous mutant and two rice homozygous mutants. Thus, the sequencing-based mapping method could clone effectively different types of plant mutations and was a powerful tool for studying the functions of plant genes in the species with known genomic sequences.  相似文献   

16.
Thoracic aortic aneurysm and dissection (TAAD) is a major cause of cardiovascular morbidity and mortality. Loss-of-function variants in LOX, encoding the extracellular matrix crosslinking enzyme lysyl oxidase, have been reported to cause familial TAAD. Using a next-generation TAAD gene panel, we identified five additional probands carrying LOX variants, including two missense variants affecting highly conserved amino acids in the LOX catalytic domain and three truncating variants. Connective tissue manifestations are apparent in a substantial fraction of the variant carriers. Some LOX variant carriers presented with TAAD early in life, while others had normal aortic diameters at an advanced age. Finally, we identified the first patient with spontaneous coronary artery dissection carrying a LOX variant. In conclusion, our data demonstrate that loss-of-function LOX variants cause a spectrum of aortic and arterial aneurysmal disease, often combined with connective tissue findings.  相似文献   

17.
Osteoporosis is the most common bone disease characterized by reduced bone mass and increased bone fragility. Genetic contribution is one of the main causes of primary osteoporosis; therefore, both genders are affected by this skeletal disorder. Nonetheless, osteoporosis in men has received little attention, thus being underestimated and undertreated. The aim of this study was to identify novel genetic variants in a cohort of 128 males with idiopathic low bone mass using a next-generation sequencing (NGS) panel including genes whose mutations could result in reduced bone mineral density (BMD). Genetic analysis detected in eleven patients ten rare heterozygous variants within the LRP5 gene, which were categorized as VUS (variant of uncertain significance), likely pathogenic and benign variants according to American College of Medical Genetics and Genomics (ACMG) guidelines. Protein structural and Bayesian analysis performed on identified LRP5 variants pointed out p.R1036Q and p.R1135C as pathogenic, therefore suggesting the likely association of these two variants with the low bone mass phenotype. In conclusion, this study expands our understanding on the importance of a functional LRP5 protein in bone formation and highlights the necessity to sequence this gene in subjects with idiopathic low BMD.  相似文献   

18.
Intellectual disability (ID) is characterized by impairments in the cognitive processes and in the tasks of daily life. It encompasses a clinically and genetically heterogeneous group of neurodevelopmental disorders often associated with autism spectrum disorder (ASD). Social and communication abilities are strongly compromised in ASD. The prevalence of ID/ASD is 1–3%, and approximately 30% of the patients remain without a molecular diagnosis. Considering the extreme genetic locus heterogeneity, next-generation sequencing approaches have provided powerful tools for candidate gene identification. Molecular diagnosis is crucial to improve outcome, prevent complications, and hopefully start a therapeutic approach. Here, we performed parent–offspring trio whole-exome sequencing (WES) in a cohort of 60 mostly syndromic ID/ASD patients and we detected 8 pathogenic variants in genes already known to be associated with ID/ASD (SYNGAP1, SMAD6, PACS1, SHANK3, KMT2A, KCNQ2, ACTB, and POGZ). We found four de novo disruptive variants of four novel candidate ASD/ID genes: MBP, PCDHA1, PCDH15, PDPR. We additionally selected via bioinformatic tools many variants in unknown genes that alone or in combination can contribute to the phenotype. In conclusion, our data confirm the efficacy of WES in detecting pathogenic variants of known and novel ID/ASD genes.  相似文献   

19.
20.
Lynch syndrome (LS) is one of the most common hereditary cancer predisposition syndromes worldwide. Individuals with LS have a high risk of developing colorectal or endometrial cancer, as well as several other cancers. LS is caused by autosomal dominant pathogenic variants in one of the DNA mismatch repair (MMR) genes MLH1, MSH2, PMS2 or MSH6, and typically include truncating variants, such as frameshift, nonsense or splicing variants. However, a significant number of missense, intronic, or silent variants, or small in-frame insertions/deletions, are detected during genetic screening of the MMR genes. The clinical effects of these variants are often more difficult to predict, and a large fraction of these variants are classified as variants of uncertain significance (VUS). It is pivotal for the clinical management of LS patients to have a clear genetic diagnosis, since patients benefit widely from screening, preventive and personal therapeutic measures. Moreover, in families where a pathogenic variant is identified, testing can be offered to family members, where non-carriers can be spared frequent surveillance, while carriers can be included in cancer surveillance programs. It is therefore important to reclassify VUSs, and, in this regard, functional assays can provide insight into the effect of a variant on the protein or mRNA level. Here, we briefly describe the disorders that are related to MMR deficiency, as well as the structure and function of MSH6. Moreover, we review the functional assays that are used to examine VUS identified in MSH6 and discuss the results obtained in relation to the ACMG/AMP PS3/BS3 criterion. We also provide a compiled list of the MSH6 variants examined by these assays. Finally, we provide a future perspective on high-throughput functional analyses with specific emphasis on the MMR genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号