首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amphiphilic thermally sensitive poly(N‐isopropylacrylamide)‐block‐poly(tetramethylene carbonate) block copolymers were synthesized by ring‐opening polymerization of tetramethylene carbonate with hydroxyl‐terminated poly(N‐isopropylacrylamide) (PNiPAAm) as macro‐initiator in the presence of stannous octoate as catalyst. The synthesis involved PNiPAAm bearing a single terminal hydroxyl group prepared by telomerization using 2‐hydroxyethanethiol as a chain‐transfer agent. The copolymers were characterized using 1H NMR and Fourier transform infrared spectroscopy and gel permeation chromatography. Their solutions show reversible changes in optical properties: transparent below the lower critical solution temperature (LCST) and opaque above the LCST. The LCST depends on the polymer composition and the media. Owing to their amphiphilic characteristics, the block copolymers form micelles in the aqueous phase with critical micelle concentrations (CMCs) in the range 1.11–22.9 mg L?1. Increasing the hydrophobic segment length or decreasing the hydrophilic segment length in the amphiphilic diblock copolymers produces lower CMCs. A core‐shell structure of the micelles is evident from 1H NMR analyses of the micelles in D2O. Transmission electron microscopic analyses of micelle morphology show a spherical structure of both blank and drug‐loaded micelles. The blank and drug‐loaded micelles have an average size of less than 130 nm. Observations show high drug‐entrapment efficiency and drug‐loading content for the drug‐loaded micelles. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
The chemoenzymatic synthesis of a novel diblock copolymer consisting of a hydrocarbon block of polycaprolactone (PCL) and an epoxy‐based block of poly(glycidyl methacrylate) (PGMA) was achieved by the combination of enzymatic ring‐opening polymerization (eROP) and atom transfer radical polymerization (ATRP). A trichloromethyl‐terminated PCL macrointiator was obtained via Novozyme 435‐catalyzed eROP of ε‐caprolactone from a bifunctional initiator, 2,2,2‐trichloroethanol, under anhydrous conditions. PCL‐b‐PGMA diblock copolymers were synthesized in a subsequent ATRP of glycidyl methacrylate. The kinetics analysis of ATRP indicated a ‘living’/controlled radical polymerization. The macromolecular structure and thermal properties of the PCL macroinitiator and of the diblock copolymer were characterized using NMR spectroscopy, gel permeation chromatography and differential scanning calorimetry. The well‐defined PCL‐b‐PGMA amphiphilic diblock copolymer self‐assembled in aqueous solution into nanoscale micelles. The size and shape of the resulting micelles were investigated using dynamic light scattering, transmission electron microscopy and tapping‐mode atomic force microscopy. Copyright © 2007 Society of Chemical Industry  相似文献   

3.
Dually responsive amphiphilic diblock copolymers consisting of hydrophilic poly(N‐isopropyl acrylamide) [poly(NIPAAm)] and hydrophobic poly(9‐anthracene methyl methacrylate) were synthesized by reversible addition fragmentation chain‐transfer (RAFT) polymerization with 3‐(benzyl sulfanyl thiocarbonyl sulfanyl) propionic acid as a chain‐transfer agent. In the first step, the poly(NIPAAm) chain was grown to make a macro‐RAFT agent, and in the second step, the chain was extended by hydrophobic 9‐anthryl methyl methacrylate to yield amphiphilic poly(N‐isopropyl acrylamide‐b‐9‐anthracene methyl methacrylate) block copolymers. The formation of copolymers with three different hydrophobic block lengths and a fixed hydrophilic block was confirmed from their molecular weights. The self‐assembly of these copolymers was studied through the determination of the lower critical solution temperature and critical micelle concentration of the copolymers in aqueous solution. The self‐assembled block copolymers displayed vesicular morphology in the case of the small hydrophobic chain, but the morphology gradually turned into a micellar type when the hydrophobic chain length was increased. The variations in the length and chemical composition of the blocks allowed the tuning of the block copolymer responsiveness toward both the pH and temperature. The resulting self‐assembled structures underwent thermally induced and pH‐induced morphological transitions from vesicles to micelles and vice versa in aqueous solution. These dually responsive amphiphilic diblock copolymers have potential applications in the encapsulation of both hydrophobic and hydrophilic drug molecules, as evidenced from the dye encapsulation studies. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46474.  相似文献   

4.
A series of new amphiphilic poly[methyl(3,3,3‐trifluoropropyl) siloxane]‐b‐poly(ethyleneoxide) (PMTFPS‐b‐PEO) diblock copolymers with different ratio of hydrophobic segment to hydrophilic segment were prepared by coupling reactions of end‐functional PMTFPS and PEO homopolymers. PMTFPS‐b‐PEO diblock copolymers synthesized were shown to be well defined and narrow molecular weight distributed by characterizations such as NMR, GPC, and FTIR. Additionally, the solution properties of these diblock copolymers were investigated using tensiometry and transmission electron microscopy. Interestingly, the critical micellization concentration increases with increasing length of hydrophobic chain. Transmission electron microscopy studies showed that PMTFPS‐b‐PEO diblock copolymers in water preferentially aggregated into vesicles. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
Three types of pegylated amphiphilic copolymers of poly(δ‐valerolactone) (PVL) were copolymerized with methoxy poly(ethylene glycol) (MePEG) and poly(ethylene glycol) (PEG4000 and PEG10,000), respectively. Pegylation of PVL allowed copolymers possessing amphiphilic property and efficiently self‐assembled to form micelles with a low critical micelle concentration (CMC) in the range of 10?7–10?8M. The average molecular weight of copolymers was in the range of 10,000–20,000 Da, and the polydispersity of copolymers was about 1.7–1.8. Higher mobility of low molecular weight PEG (i.e., MePEG and PEG4000) than high molecular weight PEG10,000 allowed valerolactone ring opening more efficient in terms of PVL/MePEG and PVL/PEG4000 copolymers possessing longer chain length in hydrophobic domain. Pegylated PVL with low CMC and triblock structure was preferred to encapsulate drug during micelle formation. Although all of these amphiphilic copolymers exhibited controlled release character, the micelles formed by triblock copolymer possessed a more stable core‐shell conformation than that by diblock copolymer, and resulted in the release of drug from triblock micelles slower than that from diblock micelles. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1836–1841, 2006  相似文献   

6.
Polymeric micelles that are responsive to pH are particularly attractive for application in drug delivery systems. In this study, one type of amphiphilic block copolymers with hydrophobic building blocks bearing pH‐sensitive ketal groups was designed. In an acidic environment, the polarity transfer from amphiphile to double hydrophile for this copolymer destroyed the driving force of micelle formation, which triggered the release of encapsulated hydrophobic molecules. The amphiphilic block copolymers monomethoxy‐poly(ethylene glycol)‐block‐poly(2,2‐dimethyl‐1,3‐dioxolane‐4‐yl)methyl acrylate (MPEG‐block‐PDMDMA) was fabricated by atom transfer radical polymerization using MPEG‐Br as macroinitiator. The critical micelle concentration of various compositions of this copolymer in aqueous solution ranged from 4.0 to 10.0 mg L?1, and the partition equilibrium constant (Kv) of pyrene in micellar solutions of the copolymers varied from 1.61 × 105 to 4.86 × 105. Their overall effective hydrodynamic diameters from dynamic light scattering measurements were between 80 and 400 nm, and the micellar morphology showed spherical geometry as investigated using transmission electron microscopy. At pH = 1.0, all of these polymeric micelles presented 100% payload release in 24 h of incubation, while at pH = 3.0, nearly 70 and 25% of pyrene was released for MPEG‐block‐PDMDMA (44/18) and MPEG‐block‐PDMDMA (44/25) in 260 h, respectively. The pH‐responsive MPEG‐block‐PDMDMA polymeric micelles having good encapsulation efficiency for hydrophobic drugs are potential candidates for biomedical and drug delivery applications. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
We report on the synthesis and self‐assembly in water of well‐defined amphiphilic star‐block copolymers with a linear crystalline polyethylene (PE) segment and two or three poly(ethylene glycol) (PEG) segments as the building blocks. Initially, alkynyl‐terminated PE (PE‐?) is synthesized via esterification of pentynoic acid with hydroxyl‐terminated PE, which is prepared using chain shuttling ethylene polymerization with 2,6‐bis[1‐(2,6‐dimethylphenyl) imino ethyl] pyridine iron (II) dichloride/methylaluminoxane/diethyl zinc and subsequent in situ oxidation with oxygen. Then diazido‐ and triazido‐terminated PE (PE‐(N3)2 and PE‐(N3)3) are obtained by the click reactions between PE‐? and coupling agents containing triazido or tetraazido, respectively. Finally, the three‐arm and four‐arm star‐block copolymers, PE‐b‐(PEG)2 and PE‐b‐(PEG)3, are prepared by click reactions between PE‐(N3)2 or PE‐(N3)3 and alkynyl‐terminated PEG. The self‐assembly of the resultant amphiphilic star‐block copolymers in water was investigated by dynamic light scattering, transmission electron microscopy, and atomic force microscopy. It is found that, in water, a solvent selectively good for PEG blocks; these star‐block copolymer chains could self‐assemble to form platelet‐like micelles with insoluble PE blocks as crystalline core and soluble PEG blocks as shell. The confined crystallization of PE blocks in self‐assembled structure formed in aqueous solution is investigated by differential scanning calorimetry. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
Amphiphilic copolymers with cationic hydrophilic moieties and different ratios of hydrophobic portion to hydrophilic portion were designed and synthesized via the combination of hydrosilylation reactions and quaternization reactions. The structures were characterized through Fourier transform infrared spectroscopy, 1H NMR , 13C NMR and gel permeation chromatography. The measurements of critical micelle concentrations, electrical conductivities and zeta potentials indicated that the copolymers could self‐assemble into nanoparticles with charges around the surface in aqueous solution. The sizes of the micelles were between 67 nm and 104 nm detected by dynamic light scattering. The self‐assembled micelles were used as drug carriers to encapsulate a model drug (tocopherol), and their drug‐loading content (DLC ) and efficiency (DLE ) were determined by UV ?visible spectra, resulting in considerable drug‐loading capacity to a tocopherol maximum up to 17.2% (DLC ) and 80.3% (DLE ) with a size of 90 nm. The blank micelles and drug‐loaded micelles displayed a spherical shape detected by transmission electron microscopy, which demonstrated not only the self‐assembly behaviors but also the drug‐loading performances of the cationic amphiphilic copolymers. All the results demonstrated that the cationic amphiphilic copolymers could be used as potential electric‐responsive drug carriers. © 2017 Society of Chemical Industry  相似文献   

9.
Suitable carrier systems for sustained release of curcumin were studied by using the self‐assembled polymeric micelles. Poly(ethylene glycol) methyl ether and poly(aromatic anhydride) were used as the hydrophilic and hydrophobic blocks, respectively, in forming amphiphilic diblock copolymers. Four different types of polymers methoxy poly(ethylene glycol‐ b‐1,3‐bis(p‐carboxyphenoxy)propane) (mPEG5000CPP, mPEG2000CPP), methoxy poly(ethylene glycol‐b‐1,6‐bis(p‐carboxyphenoxy)hexane) (mPEG5000CPH, mPEG2000CPH) were synthesized via melt condensation approach. Micelles were formed at very low polymer concentration with stable hydrophobic cores. The particle sizes of micelles remained stable during degradation period. All four different polymeric micelles showed low cytotoxicity toward human fibroblasts cells and can kill cancer cells in very low concentrations. High loading efficiency and drug content were observed in curcumin‐loaded micelles. Curcumin showed mild initial burst (30% of drug loading in the first 24 h) when released from the micelles and its release was sustained for at least 18 days. These micelles, especially those of mPEG5000CPP, show potential to serve as the delivery vehicles for sustained release of curcumin. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

10.
Enzymatic polymerization in a non‐natural environment is of interest as an environmentally friendly methodology as an alternative to the use of conventional chemical organometallic catalysts. Chemo‐enzymatic synthesis of the AB‐type diblock copolymer poly(2,2,2‐trichloroethyl 10‐hydroxydecanate)‐block‐polystyrene (PHD‐b‐PSt) was carried out by combining enzymatic self‐condensation polymerization (eSCP) and atom‐transfer radical polymerization (ATRP). Biocatalyst Novozyme 435 was successful in catalyzing the eSCP of a novel ω‐hydroxyester, i.e. 2,2,2‐trichloroethyl 10‐hydroxydecanate. The resulting ? CCl3‐terminated PHD initiated the ATRP of styrene, a ‘living’/controlled radical polymerization. The analysis of the hydrolysate from the copolymer proved the presence of a block copolymer structure. In addition, the well‐defined diblock copolymer PHD‐b‐PSt self‐assembled into nanoscale micelles in aqueous solution. The chemo‐enzymatic synthesis of diblock copolymer PHD‐b‐PSt was achieved by the combination of eSCP and ATRP. The structures and composition of the block copolymer were characterized by means of NMR, infrared and gel permeation chromatography measurements. Differential scanning calorimetry analysis showed that a microphase‐separation structure was formed in the copolymer, which was caused by the crystallization of the PHD segments. As investigated with atomic force microscopy and dynamic light scattering, these micelles had a mean diameter and a spherical shape. To our knowledge, this is the first example of a chemo‐enzymatic synthesis based on eSCP and ATRP. Copyright © 2007 Society of Chemical Industry  相似文献   

11.
Nanostructure formation in thermosets can allow the design of materials with interesting properties. The aim of this work was to obtain a nanostructured epoxy system by self‐assembly of an amphiphilic diblock copolymer in an unreacted epoxy/amine mixture followed by curing of the matrix. The copolymer employed was polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA). The thermoset system, formed by a diglycidyl ether of bisphenol A‐type epoxy resin and diaminodiphenylmethane hardener, was chosen to ensure the miscibility of most of the PMMA block until matrix gelation. Transparent materials with microphase‐separated domains were obtained for copolymer contents lower than 40 wt%. In systems containing 20 and 30 wt% block copolymer, the PS block formed spherical micelles or worm‐like structures before curing, which were stabilized through curing by the more compatible PMMA block phase. Nanostructured thermoset systems were successfully synthesized for self‐assembled amphiphilic block copolymer–epoxy/amine mixtures for copolymer contents lower than 40 wt%. Copyright © 2009 Society of Chemical Industry  相似文献   

12.
Thermo-sensitive nanosized structures have been prepared in water from poly(methyl vinyl ether)-block-poly(isobutyl vinyl ether) (PMVE-b-PIBVE) block copolymers. The composition and the architecture (diblock and triblock architectures) of the PMVE-b-PIBVE copolymers have been varied. The investigated copolymers had an asymmetric composition with a major PMVE block. While the PIBVE blocks are hydrophobic, the PMVE blocks are hydrophilic at room temperature and become hydrophobic above their demixing temperature (around 36 °C) as a result of the lower critical solution temperature (LCST) behavior. At room temperature, the amphiphilic copolymers aggregate in water above a critical micelle concentration, which has been experimentally measured by hydrophobic dye solubilization. The hydrodynamic diameter of the structures formed above the cmc has been measured by dynamic light scattering (DLS) while their morphology has been studied by transmission electron microscopy (TEM). 1H NMR measurements in D2O at room temperature reveal that the aggregates contain PIBVE insoluble regions surrounded by solvated PMVE chains. These investigations have shown that polydisperse spherical micelles are formed for asymmetric PMVE-b-PIBVE copolymers containing at least 9 IBVE units. For copolymers containing less IBVE units, loose aggregates are formed.Finally, the thermo-responsive, reversible properties of these structures have been investigated. Above the cloud point of the copolymers, the loose aggregates precipitate while the micelles form large spherical structures.  相似文献   

13.
A new amphiphilic Y‐shaped copolymer, comprised of hydrophobic Poly(trimethylene carbonate) (PTMC) and hydrophilic Poly(N,N‐dimethylamino‐2‐ethyl methacrylate) (PDMAEMA), was designed and synthesized by a combination of atom transfer radical polymerization (ATRP) and ring‐opening polymerization (ROP) using a new heterofunctional initiator, Br‐Init‐(OH)2, bearing one initiation site for ATRP and two for ROP. At first, a new trifunctional core molecule bearing hydroxyl group and bromine moieties, Br‐Init‐(OH)2, was synthesized via protection followed by esterification reaction of 5‐ethyl‐5‐hydroxymethyl‐2,2‐dimethyl‐1,3‐dioxane with 2‐bromoisobutyryl bromide and deprotection. In the presence of trifunctional core molecule, Br‐Init‐(OH)2, target Y‐shaped miktoarm star copolymers, (PTMC)2‐ b‐PDMAEMA, were successfully synthesized by sequence conducting the ROP of TMC and ATRP of DMAEMA. The Y‐shaped copolymers were characterized by 1H NMR and GPC measurements. Subsequently, the self‐assembly behavior of these copolymers was investigated by dynamic light scattering method and transmission electron microscopy, which indicated that these amphiphilic Y‐shaped copolymers can self‐assemble into micelles and possess distinct pH‐dependent size in aqueous milieu. The results indicate that the amphiphilic Y‐shaped copolymers had the pH‐responsive properties similar to the expected PDMAEMA. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

14.
Novel amphiphilic heterograft copolymers consisting of phosphoester functionalized PEG (phosPEG) and PCL (phosPCL) were synthesized by the ring‐opening polymerization via “grafting through” method. The heterograft structure and thermal properties of these copolymers with various compositions were characterized by 1H‐NMR, 31P NMR, size exclusion chromatography (SEC), and differential scanning calorimetry (DSC) in detail. These amphiphilic copolymers could self‐assemble into micellar structures in aqueous solution, and their critical micellization concentrations (CMC) were determined to be 0.69–1.25 mg/L by fluorescence technique. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) measurements show that these heterograft copolymer micelles are spherical in shape with the particle size ranging from 20 to 60 nm, which has potential in biomedical application. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Star‐shaped copolymers poly(ε‐caprolactone)‐bolck‐poly(ε‐benzyloxycarbonyl‐l ‐lysine) (SPPCL‐b‐PZLLs) with porphyrin core were synthesized by a sequential ring‐opening polymerization (ROP) of CL and Nε‐Benzyloxycarbonyl‐l ‐lysine N‐Carboxyanhydride. After the deprotection of benzyloxycarbonyl groups in polylysine blocks, the star‐shaped amphiphilic copolymers SPPCL‐b‐PLLs were obtained. These amphiphilic copolymers can self‐assemble into micelles or aggregates in aqueous solution. Investigation shows that the morphology of micelles/aggregates varied according to the change of pH values of media, indicating the pH‐responsive property of SPPCL‐b‐PLL copolymers. Furthermore, associated with conjugated porphyrin cores, the SPPCL‐b‐PLL copolymers micelles showed a certain degree of Photodynamic Therapy (PDT) effects on tumor cells, suggesting its potential application as carrier for hydrophobic drug with additional therapeutic ability of inherent porphyrin segments. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40097.  相似文献   

16.
Narrow‐distribution, well‐defined comb‐like amphiphilic copolymers are reported in this work. The copolymers are composed of poly(methyl methacrylate‐co‐2‐hydroxyethyl methacrylate) (P(MMA‐co‐HEMA)) as the backbones and poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA) as the grafted chains, with the copolymer backbones being synthesized via atom‐transfer radical polymerization (ATRP) and the grafted chains by oxyanionic polymerization. The copolymers were characterized by gel permeation chromatography (GPC), Fourier‐transform infrared (FT‐IR) spectroscopy and 1H NMR spectroscopy. The aggregation behavior in aqueous solutions of the comb‐like amphiphilic copolymers was also investigated. 1H NMR spectroscopic and surface tension measurements all indicated that the copolymers could form micelles in aqueous solutions and they possessed high surface activity. The results of dynamic light scattering (DLS) and scanning electron microscopy (SEM) investigations showed that the hydrodynamic diameters of the comb‐like amphiphilic copolymer aggregates increased with dilution. Because of the protonizable properties of the graft chains, the surface activity properties and micellar state can be easily modulated by variations in pH. Copyright © 2004 Society of Chemical Industry  相似文献   

17.
A straightforward strategy is described to synthesize poly(?‐caprolactone)‐graft‐poly(N‐isopropylacrylamide) (PCL‐g‐PNIPAAm) amphiphilic graft copolymers consisting of potentially biodegradable polyester backbones and thermoresponsive grafting chains. PCL with pendent chlorides was prepared by ring‐opening polymerization, followed by conversion of the pendent chlorides to azides. Alkyne‐terminated PNIPAAm was synthesized by atom transfer radial polymerization. Then, the alkyne end‐functionalized PNIPAAm was grafted onto the PCL backbone by a copper‐catalyzed azide–alkyne cycloaddition. PCL‐g‐PNIPAAm graft copolymers self‐assembled into spherical micelles comprised of PCL cores and PNIPAAm coronas. The critical micelle concentrations of the graft copolymers were in the range 7.8–18.2 mg L?1, depending on copolymer composition. Mean hydrodynamic diameters of micelles were in the range 65–135 nm, which increased as the length of grafting chains grew. PCL‐g‐PNIPAAm micelles were thermosensitive and aggregated upon heating. © 2014 Society of Chemical Industry  相似文献   

18.
A thermosensitive amphiphilic triblock copolymer, poly(d,l ‐lactide) (PLA)‐b‐poly(N‐isopropyl acrylamide) (PNIPAAM)‐b‐PLA, was synthesized by the ring‐opening polymerization of d,l ‐lactide; the reaction was initiated from a dihydroxy‐terminated poly(N‐isopropyl acrylamide) homopolymer (HO‐PNIPAAM‐OH) created by radical polymerization. The molecular structure, thermosensitive characteristics, and micellization behavior of the obtained triblock copolymer were characterized with Fourier transform infrared spectroscopy, 1H‐NMR, gel permeation chromatography, dynamic light scattering, and transmission electron microscopy. The obtained results indicate that the composition of PLA‐b‐PNIPAAM‐b‐PLA was in good agreement with what was preconceived. This copolymer could self‐assemble into spherical core–shell micelles (ca. 75–80 nm) in aqueous solution and exhibited a phase‐transition temperature around 26 °C. Furthermore, the drug‐delivery properties of the PLA‐b‐PNIPAAM‐b‐PLA micelles were investigated. The drug‐release test indicated that the synthesized PLA‐b‐PNIPAAM‐b‐PLA micelles could be used as nanocarriers of the anticancer drug adriamycin (ADR) to effectively control the release of the drug. The drug‐delivery properties of PLA‐b‐PNIPAAM‐b‐PLA showed obvious thermosensitive characteristics, and the release time of ADR could be extended to 50 h. This represents a significant improvement from previous PNIPAAM‐based drug‐delivery systems. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45304.  相似文献   

19.
A series of poly(?‐caprolactone)–poly(ethylene glycol) (PCL‐PEG) and poly(?‐caprolactone/glycolide)–poly(ethylene glycol) [P(CL/GA)‐PEG] diblock copolymers were prepared by ring‐opening polymerization of ?‐caprolactone or a mixture of ?‐caprolactone and glycolide using monomethoxy PEG (mPEG) as macroinitiator and Sn(Oct)2 as catalyst. The resulting copolymers were characterized using 1H‐NMR, gel permeation chromatography, differential scanning calorimetry, and wide‐angle X‐ray diffraction. Copolymer micelles were prepared using the nanoprecipitation method. The morphology of the micelles was spherical or worm‐like as revealed by transmission electron microscopy, depending on the copolymer composition and the length of the hydrophobic block. Introduction of the glycolide component, even in small amounts (CL/GA = 10), disrupted the chain structure and led to the formation of spherical micelles. Interestingly, the micelle size decreased with the encapsulation of paclitaxel. Micelles prepared from mPEG5000‐derived copolymers exhibited better drug loading properties and slower drug release than those from mPEG2000‐derived copolymers. Drug release was faster for copolymers with shorter PCL blocks than for those with longer PCL chains. The introduction of glycolide moieties enhanced drug release, but the overall release rate did not exceed 10% in 30 days. In contrast, drug release was enhanced in acidic media. Therefore, these bioresorbable micelles and especially P(CL/GA)‐PEG micelles with excellent stability, high drug loading content, and prolonged drug release could be promising for applications as drug carriers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45732.  相似文献   

20.
The copolymerization system of acrylamide (AM) and styrene (St) was acquired by using amphiphilic block copolymer PAM‐b‐PSt with lower molecular weight as polymeric surfactant, and then the microemulsion phase diagram was drawn. The appropriate copolymerization systems were chosen in the phase diagram, and higher molecular weight amphiphilic block copolymers PAM‐b‐PSt were prepared by self‐emulsifying microemulsion method. The chemical composition and structure of the products were analyzed by FTIR, 1H‐NMR, 13C‐NMR, GPC, and UV; the block structure of products was characterized by DSC, and the hydrophobic association property of the products was studied by the fluorescence probe and rotating viscosity measurement. The results showed that O/W microemulsion was also acquired by using the polymeric surfactant; 3 g polymeric surfactant was only used to disperse 0.25 g St into aqueous solution, which showed higher emulsifying efficiency. At the same time, the use of self‐emulsifying microemulsion copolymerizing system can avoid back treatment of small molecular surfactant and the purified block polymer was prepared in one step; the prepared copolymers have good hydrophobic association properties and their aqueous solution showed evident viscosity increment. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号