首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In the first stage, chitosan (CH)–hydroxyapatite (HA)-multiwalled carbon nanotube (MWCNT) composite coatings were synthesized by electrophoretic deposition technique (EPD) on 316L stainless steel substrates at different levels of pH and characterized by X-ray diffraction (XRD), Raman spectroscopy, FTIR and field emission scanning electron microscopy (FESEM). A smooth distribution of HA and MWCNT particles in a chitosan matrix with strong interfacial bonding was obtained. In the next stage, effects of pH and MWCNT content of the suspension on the corrosion behavior and deposition mechanism were studied. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) curves revealed that increasing pH level of the suspension increases the corrosion protection properties of the deposited composite coating in simulated body fluid (SBF). Furthermore, Nyquist plots showed that increasing MWCNT content of the suspension resulted in higher amounts of Rp, but because of the capillary properties of MWCNTs and degradability of the chitosan matrix, corrosion protection level of the coatings containing HA–CH–MWCNT was lower than those of coatings containing solely HA–CH. Amperometric curves in different pH levels of the suspension revealed that the system is diffusion controlled at elevated pH values.  相似文献   

2.
Very long and highly dispersible multi-walled carbon nanotube (MWCNT) bundles were synthesized in large quantity by catalytic chemical vapor deposition, and their structural and electrical properties were characterized. It was found that the MWCNTs could be synthesized with either bundled (long-aligned) or short-entangled structure depending on the catalyst system. The aligned MWCNTs were found to be more conductive and more dispersible than the entangled ones. The MWCNT/poly (methyl methacrylate) composites were prepared using both entangled and aligned MWCNTs. The aligned MWCNTs were found to give the composite higher electrical conductivity, which might be attributed to long length and high dispersibility. It was further found that the longer the MWCNT bundle, the higher electrical conductivity of the composite.  相似文献   

3.
Vapor grown carbon nanofibers (VGCNFs) were deposited on carbon fibers (CFs) using electrophoretic deposition (EPD). Composites of the resulting hybrid material (CF-VGCNF) in an epoxy matrix were fabricated by the vacuum-assisted resin transfer molding process. The electrical conductivities of the composites were significantly improved compared to those without the VGCNF reinforcement. The Taguchi method was used to optimize the EPD process conditions through the analysis of means and the analysis of variance for achieving a highly uniform deposition of carbon nanofibers. The parameters considered for optimization are: deposition time, applied voltage, concentration of VGCNF in a distilled water suspension, and the distance between anode (a carbon fabric) and cathode (a copper plate). An orthogonal array of L9 (34) was created in the statistical design of experiments. The through-thickness electrical conductivity of the composites produced using the optimum deposition conditions was more than 90 times that of carbon fiber/epoxy composites. When compared with the average electrical conductivity of the nine design experiments, the electrical conductivity of the CF-VGCNF/epoxy composite using a filler prepared under the optimum deposition conditions showed a 51% improvement.  相似文献   

4.
A series of polyimide‐based nanocomposites containing polyimide‐grafted multi‐walled carbon nanotubes (PI‐g MWCNTs) and silane‐modified ceramic (aluminium nitride (AlN)) were prepared. The mechanical, thermal and electrical properties of hybrid PI‐g MWCNT/AlN/polyetherimide nanocomposites were investigated. After polyimide grafting modification, the PI‐g MWCNTs showed good dispersion and wettability in the polyetherimide matrix and imparted excellent mechanical, electrical and thermal properties. The utilization of the hybrid filler was found to be effective in increasing the thermal conductivity of the composites due to the enhanced connectivity due to the high‐aspect‐ratio MWCNT filler. The use of spherical AlN filler and PI‐g MWCNT filler resulted in composite materials with enhanced thermal conductivity and low coefficient of thermal expansion. Results indicated that the hybrid PI‐g MWCNT and AlN fillers incorporated into the polyetherimide matrix enhanced significantly the thermal stability, thermal conductivity and mechanical properties of the matrix. Copyright © 2012 Society of Chemical Industry  相似文献   

5.
High performance perfluoro alkoxy (PFA) and chemical vapor deposition-grown multi-walled carbon nanotube (MWCNT) composite films with thicknesses of 30 μm were prepared using a scalable spray deposition technique. A homogeneous distribution of MWCNTs within the PFA matrix was confirmed by electron and optical microscopy. Dielectric and AC conductivity measurements showed a significant enhancement of dielectric permittivity for PFA/MWCNT films at low frequencies, and a very weak dependence of dielectric permittivity on temperature in the range 25-230 °C. Very low percolation threshold volume fractions of ca. 0.0043 and 0.0017 were attained for MWCNTs with two different aspect ratios, which have been explained by an inherent feature of spray route, a microcapacitor model and percolation theory. The combination of PFA/MWCNT composites and the spray deposition route provides a promising approach for the fabrication of industrial scale composite films with well-controlled dielectric properties for micro-electronic and high temperature applications.  相似文献   

6.
Polyamic acid, the precursor of polyimide, was used for the preparation of polyimide/multiwalled carbon nanotubes (MWCNTs) nanocomposite films by solvent casting technique. In order to enhance the chemical compatibility between polyimide matrix and MWCNTs, the latter was surface modified by incorporating acidic and amide groups by chemical treatment with nitric acid and octadecylamine (C18H39N), respectively. While the amide-MWCNT/polyimide composite shows higher mechanical properties at low loadings (<3 wt%), the acid-MWCNT/polyimide composites perform better at higher loadings (5 wt%). The tensile strength (TS) and the Young’s modulus (YM) values of the acid-MWCNT/polyimide composites at 5 wt% MWCNT loadings was 151 and 3360 MPa, respectively, an improvement of 54% in TS and 35% in YM over the neat polyimide film (TS = 98 MPa; YM = 2492 MPa). These MWCNT-reinforced composites show remarkable improvement in terms of thermal stability as compared to that for pure polyimide film. The electrical conductivity of 5 wt% acid modified MWCNTs/polyimide nanocomposites improved to 0.94 S cm 1 (6.67 × 10 18 S cm−1 for pure polyimide) the maximum achieved so far for MWCNT-polyimide composites.  相似文献   

7.
Electrophoretic deposition (EPD) is now a well established colloidal processing technique which uses electrophoresis mechanism for the movement of suspended charged particles in a suspension in the presence of an electric field. In this work, electrophoretic deposition of BaZr0.4Ce0.4Y0.2O3-δ (BZCY) in ethanol medium was performed under different conditions on both conducting and non-conducting (porous anode) substrate without using any external additives in a suspension bath. Process parameters such as deposition time, voltage, and rate of deposition of suspended particles were studied under various conditions. Green coating deposited under different potential (30, 50, and 70V) was uniform and crack free, even at extended time of deposition. Surface roughnesses have also been evaluated to correlate it with deposition conditions. It is also found that the rate of deposition on conducting substrate was higher as compared to that on non-conducting substrate (anode). XRD studies of the calcined powder and coating exhibit an expected simple cubic perovskite structure. The deposition yield increases linearly with voltage for each deposition time for both conducting and non-conducting substrates. The coating on non-conducting porous anode heat treated at 1500°C for 2 hours was dense and well adherent to the anode substrate. A film thickness of about 13 μm was obtained at 70V. Such dense BZCY electrolyte coating on BZCY+NiO anode (Half cell) could be well utilized for fabrication of proton conducting SOFC single cell by applying suitable cathode layer on electrolyte film.  相似文献   

8.
Aligned multi-walled carbon nanotube (MWCNT)/polymer composite films are prepared by solution casting in the presence of an alternating electric field. Application of 7 kV/m at a frequency of 60 Hz to the polymer composite melt induces MWCNT alignment in the direction of the applied field, which is maintained after polymer crystallization. The electrical conductivity and piezoresistive response of electric-field-aligned and randomly oriented 0.1–0.75 wt% MWCNT/polysulfone films are evaluated. Electrical conductivity is 3–5 orders of magnitude higher for composites with electric-field-aligned MWCNTs than for randomly oriented composites. MWCNT alignment inside the polymer matrix also increases the film piezoresistive sensitivity, enhancing the strain sensing capabilities of the composite film.  相似文献   

9.
Boehmite/multi-wall carbon nanotube (MWCNT) composite powders were prepared by hydrothermal processing. Starting chemical of aluminum acetate powders (2Al(OH)(C2H3O2)2) and MWCNTs were mixed for the formation of stoichiometric boehmite powders in an attempt to synthesize MWCNT-reinforced boehmite nano-powders via hydrothermal synthesis at 200 °C for 2 h. Kinetically stable suspensions of MWCNT–boehmite composite powders were prepared and subsequently electrophoretic deposition (EPD) was applied to obtain complex shape products in the form of micro-gears. It is shown that the EPD technique is a powerful tool to manufacture small components in a short time. Detail TEM observations also indicated that hydrothermal processing provides an ideal environment to obtain homogeneous mixtures of MWCNT–boehmite powders due to effective surface functionalization of MWCNTs under hydrothermal conditions.  相似文献   

10.
An amino acid containing poly(amide-thioester-imide) (PATEI) possessing a conjugated thiadiazol ring was shown to be effective for dispersing multiwall carbon nanotubes (MWCNTs) in N,N′-dimethylacetamide. Through casting of these dispersions, MWCNT/PATEI composite films were successfully fabricated on substrates and showed no signs of macroscopic aggregation. To increase the compatibility between PATEI matrix and MWCNTs, carboxyl-functionalized MWCNTs (f-MWCNTs) were used in this study. The f-MWCNTs were dispersed homogeneously in the PATEI matrix while the structure of the polymer and the MWCNTs structure were stable in the preparation process as revealed by transmission electron microscopy. Tensile tests and thermal analysis were carried out on free-standing composite films for different MWCNT loading levels. Results showed that overall mechanical and thermal properties of the composites were greatly improved as compared with the neat PATEI film. Fourier transform infrared spectroscopy, powder X-ray diffraction, and field emission electron microscopy were also used to evaluate the MWCNT/PATEI composite system.  相似文献   

11.
A homogeneous dispersion of multi-walled carbon nanotubes (MWCNTs) in syndiotactic polystyrene (sPS) is obtained by a simple solution dispersion procedure. MWCNTs were dispersed in N-methyl-2-pyrrolidinone (NMP), and sPS/MWCNT composites are prepared by mixing sPS/NMP solution with MWCNT/NMP dispersion. The composite structure is characterized by scanning electron microscopy and transmission electron microscopy. The effect of MWCNTs on sPS crystallization and the composite properties are studied. The presence of MWCNTs increases the sPS crystallization temperature, broadens the crystallite size distribution and favors the formation of the thermodynamically stable β phase, whereas it has little effect on the sPS γ to α phase transition during heating. By adding only 1.0 wt.% pristine MWCNTs, the increase in the onset degradation temperature of the composite can reach 20 °C. The electrical conductivity is increased from 10−10∼−16 (neat sPS) to 0.135 S m−1 (sPS/MWCNT composite with 3.0 wt.% MWCNT content). Our findings provide a simple and effective method for carbon nanotube dispersion in polymer matrix with dramatically increased electrical conductivity and thermal stability.  相似文献   

12.
Jie Zhang  Gert Heinrich 《Carbon》2010,48(8):2273-2281
The interphase between reinforcing fibre and matrix is a controlling element in composite performance. We deposited multi-walled carbon nanotubes (MWCNTs) onto electrically insulating glass fibre surfaces leading to the formation of semiconductive MWCNT-glass fibres and in turn multifunctional fibre/polymer interphases. The deposition process of MWCNTs onto glass fibre surfaces involved both electrophoretic deposition (EPD) and conventional dip coating methods. The EPD coating method produces a more homogeneous and continuous nanotube distribution on the glass fibre surface compared with the dip coating. According to fragmentation test results, the interphase with a small number of heterogeneous MWCNTs in the EPD fibre/epoxy composites, mimicking a biological bone structure, can remarkably improve the interfacial shear strength. We found that the semiconductive interphase results in a high sensitivity of the electrical resistance to the tensile strain of single glass fibre model composites. This material provides a possible in situ mechanical load sensor and early warning of fibre composite damage.  相似文献   

13.
Composite films of Cu and multiwalled carbon nanotubes (MWCNTs) were fabricated by an electrodeposition technique, and their field emission properties were examined. Commercially available MWCNTs with various diameters (60–150 nm) were used. The microstructure of the composite films was analyzed by scanning electron microscopy and the field emission properties were measured using a diode-type system. Cu/MWCNT composite films with homogeneous dispersion of MWCNTs were fabricated using each type of MWCNT. Bare MWCNTs were present on the surface of the composite films and the ends of the protruding tips were fixed by the deposited copper matrix. The composite films produced clear emission currents and the corresponding Fowler–Nordheim (F–N) plots showed that these were field emission currents. The turn-on electric field tended to decrease with decreasing MWCNT diameter. A light-emitting device incorporating the Cu/MWCNT composite film as a field emitter was fabricated, and its light-emitting properties were investigated. Light emission with a brightness of around 100 cd m?2 was observed for approximately 100 h.  相似文献   

14.
The conductive polyamide 66 (PA66)/carbon nanotube (CNT) composites reinforced with glass fiber‐multiwall CNT (GF‐MWCNT) hybrids were prepared by melt mixing. Electrostactic adsorption was utilized for the deposition of MWCNTs on the surfaces of glass fibers (GFs) to construct hybrid reinforcement with high‐electrical conductivity. The fabricated PA66/CNT composites reinforced with GF‐MWCNT hybrids showed enhanced electrical conductivity and mechanical properties as compared to those of PA66/CNT or PA66/GF/CNT composites. A significant reduction in percolation threshold was found for PA66/GF‐MWCNT/CNT composite (only 0.70 vol%). The morphological investigation demonstrated that MWCNT coating on the surfaces of the GFs improved load transfer between the GFs and the matrix. The presence of MWCNTs in the matrix‐rich interfacial regions enhanced the tensile modulus of the composite by about 10% than that of PA66/GF/CNT composite at the same CNT loading, which shows a promising route to build up high‐performance conductive composites. POLYM. COMPOS. 34:1313–1320, 2013. © 2013 Society of Plastics Engineers  相似文献   

15.
电泳沉积法制备碳化钛膜的研究   总被引:2,自引:0,他引:2  
游常  江东亮  谭寿洪  孙莹 《陶瓷学报》2001,22(3):125-128
电泳沉积法(EPD)制备薄膜具有设备简单,成本低,成膜快,被镀件(用于沉积薄膜的基体)形状不受限制,薄膜厚度均匀,并且其厚度在较大范围内可控等优点。碳化钛熔点高、硬度高、化学稳定性好,在复合材料领域具有广阔的应用前景。本文利用电泳沉积法制备出了均匀的碳化钛膜,研究了碳化钛粉末在悬浮介质中的荷电机理;考察了碳化钛粉末在有机悬浮液中的分散性和稳定性;研究了电泳沉积的动力学规律,为今后制备含碳化钛的层状复合材料打下了基础。  相似文献   

16.
Multiwalled carbon nanotubes (MWCNTs) were synthesized using chemical vapor deposition and poly(trimethylene terephthalate) (PTT)/MWCNT composites with varying amounts of MWCNTs were prepared by melt compounding using DSM micro‐compounder. Morphological characterization by SEM and TEM showed uniform dispersion of MWCNTs in PTT matrix upto 2% (w/w) MWCNT loading. Incorporation of MWCNTs showed no effect on percent crystallinity but affected the crystallite dimensions and increased the crystallization temperature. Dynamic mechanical characterization of composites showed an increase in storage modulus of PTT upon incorporation of MWCNTs above glass transition temperature. The electrical conductivity of PTT/MWCNT composites increased upon incorporation of MWCNTs and percolation threshold concentration was obtained at a loading of MWCNTs in the range of 1–1.5% (w/w). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
Hydroxyapatite (HA) coatings with controlled porosity were prepared by electrophoretic deposition (EPD) method. Carbon black (CB) particles were used as the sacrificial template (porogen agent). Two component suspensions containing different concentrations of HA and CB particles were prepared in isopropanol. It was found that the finer and positively charged HA nanoparticles are heterocoagulated on the coarser and negatively charged CB particles to form CB–HA composite particles with net positive charge. The deposition rate from the suspensions with WR (CCB/CHA ratio) of 0.25 was faster than that of those with WR: 0.5 at initial times of EPD. However the situation was reversed at longer EPD times. It was also found that the amount of porosity in the coatings increases as the CB concentration in the suspension increases (15%, 24%, 31%, 43% for the coatings deposited from the suspensions with 20 g/L HA nanoparticles and 0, 5, 10 and 20 g/L CB particles, respectively).  相似文献   

18.
New series of polyimide (PI) nanocomposites reinforced with three different amounts of multiwalled carbon nanotubes (MWCNT; 0.5, 1, and 3 wt%) were prepared by casting, evaporation and thermal imidization. Homogeneous dispersion of MWCNT in PI matrix was investigated by transmission electron microscopy. The effects of MWCNT on the thermal properties of the PI were investigated by thermogravimetric analysis. The results showed that the thermal stability of the nanocomposites enhanced with the increasing MWCNTs content. The resultant PI/MWCNT nanocomposites were electrically conductive with significant conductivity enhancement at 3 wt% MWCNT, which is favorable for many practical uses.  相似文献   

19.
Poly(N‐vinylcarbazole) (PVK) composites containing different concentrations of multiwalled carbon nanotube (MWCNT) were synthesized through the oxidative polymerization of N‐vinylcarbazole with ferric chloride. The synthesized composites were characterized using Fourier transform infrared spectroscopy, ultraviolet‐visible spectra, and thermogravimetric analysis. A honeycomb‐patterned film was fabricated by casting the PVK–MWCNT composite solution under humid conditions. The morphology of the honeycomb‐patterned films in the PVK–MWCNT polymer composites and the dependence of its pore diameter and pore height on MWCNT concentration were analyzed using scanning electron microscopy. The honeycomb‐patterned films were treated at 150, 250, 400, and 490°C to study the arrangement of MWCNTs in the patterned films and to measure the DC conductivity depending on the calcination temperature. DC conductivity of the patterned films was increased by increasing the concentration of MWCNT in the composites and in the increased pretreatment temperature. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

20.
Multi-walled carbon nanotubes (MWCNT)/polyelectrolyte (PE) hybrid thin films were fabricated by alternatively depositing negatively charged MWCNT and positively charged (diallyldimethylammonium chloride) (PDDA) via layer-by-layer (LbL) assembly technique. The stepwise growth of the multilayer films of MWCNT and PDDA was characterized by UV–vis spectroscopy. Scanning electron microscopy (SEM) images indicated that the MWCNT were uniformly embedded in the film to form a network and the coverage density of MWCNT increased with layer number. Au nanoparticles (NPs) could be further adsorbed onto the film to form PE/MWCNT/Au NPs composite films. The electron transfer behaviour of multilayer films with different compositions were studied by cyclic voltammetry using [Fe(CN)6]3−/4− as an electrochemical probe. The results indicated that the incorporation of MWCNT and Au NPs not only greatly improved the electronic conductivity of pure polyelectrolyte films, but also provided excellent electrocatalytic activity towards the oxidation of nitric oxide (NO).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号