首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
分别采用Fe~(2+)/H_2O_2、活性炭(AC)/H_2O_2、AC/H_2O_2/Fe~(2+)和再生AC四种体系对染料废水生化出水进行处理,分别考察了不同体系中,H_2O_2的投加浓度、n(H_2O_2)/n(Fe~(2+))、pH和反应时间及再生炭对废水处理效果的影响,并对处理效果进行对比。结果表明AC/H_2O_2/Fe~(2+)体系对废水COD的去除效果最好,去除率为64%,再生AC对废水色度去除率最高为94%。  相似文献   

2.
利用化学沉淀法、亚硫酸钠液相还原法、芬顿氧化联合工艺对高SCN~-含量有机制药废水进行处理。结果表明,在CuSO_4投加量34 g/L、pH为6、反应温度25℃、反应时间1 h的优化条件下,化学沉淀法COD由27.75 g/L降至10.48 g/L;在CuSO_4与Na_2SO_3投加量为1.6倍理论量,pH为3,反应时间10 min的优化条件下,亚硫酸钠液相还原法废水中的SCN~-去除率为99.85%,COD降至7.032 g/L;在H_2O_2投加量为1.2倍理论量,H_2O_2、Fe~(2+)摩尔比10:1,pH为3.5,反应时间1 h的优化条件下,芬顿试剂处理废水,COD降至1.411 g/L。联合法处理后,COD和SCN~-总去除率分别达94.91%和99.85%。  相似文献   

3.
以染料罗丹明B(RhB)为目标污染物,以泡沫铁为非均相催化剂,比较均相与非均相超声芬顿体系对RhB的去除效果,并考察了RhB初始含量、溶液初始pH、H_2O_2投加量等因素的影响。通过对不同体系反应速率、Fe~(2+)含量变化以及H_2O_2产量的比较分析,探索比较了降解机制。结果表明,均相超声芬顿体系对RhB的去除率高于非均相超声芬顿体系,当初始RhB的质量浓度为5 mg/L,初始pH为3,H_2O_2投加量为0.5 mmol/L时,RhB去除率分别达到99.86%、94.43%;前40 s符合一级反应动力学方程,基于泡沫铁的非均相芬顿体系可在超声辐射下产生更多Fe~(2+)和H_2O_2,从而有利于对目标污染物的持续降解。  相似文献   

4.
芬顿氧化法是一种高级氧化技术,具有较高的去除难降解有机污染物的能力,常被应用于印染废水的深度处理[1]。利用芬顿法对滨州高新区某纺织印染厂的生化出水进行深度处理,采用正交实验,研究芬顿反应时间、反应pH、芬顿试剂不同投加量对废水COD去除效果的影响。实验结果表明:在p H为3. 5,反应时间为40 min,H_2O_2投加量为双氧水和COD投加比例=1∶1,硫酸亚铁的投加量为Fe~(2+)与H_2O_2的投加比例=1∶3时,COD去除率可达90. 5%。  相似文献   

5.
《广州化工》2021,49(9)
医药中间体废水具有难降解有机物浓度高、毒性大、可生化性差等特点,直接生化处理,很难达到处理效果,一般需要进行强化预处理。本文采用Fe/C微电解耦合Fenten预处理医药中间体废水,考察了处理的影响因素,结果表明:(1)Fe/C微电解耦合Fenten对COD去除率可达44%,比单独芬顿处理COD去除率提高约8%;(2)H_2O_2投加量不大于1.5%,铁粉投加量与H_2O_2投加比例为2:1(摩尔比),反应pH为2~3时,COD去除效果最好。  相似文献   

6.
运用芬顿氧化法对烟草薄片废水生化处理出水进行高级氧化实验,探讨芬顿试剂加药量、反应p H值对废水COD_(Cr)和色度的去除效果,同时探究芬顿试剂加药量与系统产泥率的关系。结果表明,芬顿氧化法对废水色度有着极好的去除率,废水色度能从800倍处理至30以下,在pH=2.8、m(H_2O)∶m(COD)=3.0、n(H_2O_2)∶n(Fe~(2+))=5∶1时芬顿处理过后COD_(Cr)可由280 mg/L降至60 mg/L左右;系统最终产泥率与Fe~(2+)加药量正相关。  相似文献   

7.
采用Fenton氧化法处理有机硅工业废水。通过正交试验和单因素试验,考察了反应时间、n(H_2O_2)/n(Fe~(2+))、温度、pH值和H_2O_2投加量等因素对废水CODCr去除率的影响。结果表明,Fenton氧化法的影响因素主次为:H_2O_2投加量、pH值、温度、n(H_2O_2)/n(Fe~(2+))、反应时间;在pH值为3、n(H_2O_2)/n(Fe2+)值为6、反应时间为60 min、温度为35℃的最佳条件下,对于CODCr的质量浓度为5 440 mg/L的有机硅废水,在100 m L的水样中投加14 mL H_2O_2(30%),可使CODCr的去除率达到90.92%。  相似文献   

8.
用Fenton试剂对右旋糖酐铁的生产废水进行氧化处理试验,研究了n(H_2O_2)∶n(Fe~(2+))、H_2O_2浓度、温度和反应时间对废水COD去除率的影响。结果表明,在n(H_2O_2)∶n(Fe~(2+))=88∶1,H_2O_2投加量为53800mg·L~(-1),温度为90℃,反应时间为2h的条件下,废水COD去除率可达98%以上,处理效果良好。  相似文献   

9.
对Fenton氧化处理电镀废水进行了研究,探讨了Fenton反应中的H_2O_2投加量、Fe~(2+)与H_2O_2的物质的量比、pH值以及反应时间对COD去除效果,得到的最佳Fenton工艺参数为:H_2O_2投加量为0.06mol/L、[Fe~(2+)]/[H_2O_2]为1∶3、pH值为3、反应时间40min、反应温度25℃。在此条件下,废水COD从原来2750mg/L降为441mg/L,COD去除率可达到83.95%。  相似文献   

10.
殷旭东 《当代化工》2016,(4):673-676
采用Fenton预处理高浓度焦化废水,以COD和挥发酚为评价指标,通过正交和单因素实验研究了废水初始pH值、H_2O_2量、[Fe~(2+)]/[H_2O_2]和反应时间对处理效果的影响,同时对反应过程的动力学进行了探讨。结果表明:同时降解COD和挥发酚的最佳控制条件是pH值为3、H_2O_2投加量为170 m L/L、Fe~(2+)/H_2O_2摩尔比为1:80、反应时间为20 min,此时COD和挥发酚的去除率分别达到80%和95%以上;COD的降解反应符合一级动力学方程规律,相关系数R~2=0.991 5,反应速率常数为0.446 9 min~(-1)。  相似文献   

11.
采用微波辅助强化Fenton体系处理ABS树脂生产过程中的混合废水。文章探讨了微波照射时间、微波照射功率、pH值、H_2O_2投加量以及Fe~(2+)/H_2O_2摩尔比等因素对COD和浊度去除率的影响,并将微波辅助Fenton法与传统Fenton法进行比较。结果表明:在室温条件下,处理100 mL ABS废水,微波辅助Fenton体系最佳条件为微波照射时间150 s、微波功率600 W、pH值为3、H_2O_2投加量1.5 mL、Fe~(2+)/H_2O_2摩尔比1∶8,微波-Fenton法所需的时间仅为传统Fenton法的1/15,浊度去除率可达98%,COD去除率可达65%。  相似文献   

12.
利用自主开发的芬顿流化床反应器对邻氨基苯甲酸废水进行处理,考查Fe~(2+)投加量及pH值对邻氨基苯甲酸废水COD去除效果的影响。结果表明,在反应时间为30min,pH=3,COD与H_2O_2、Fe~(2+)的物质的量比为1∶1.1∶0.4时,COD去除率可达85%;pH=5时,COD去除率仍能保持在70%以上。表明流化床芬顿法在降解邻氨基苯甲酸方面要优于传统芬顿工艺,同时该法还能减少铁盐使用量,这对于减少铁泥产量、降低工艺运行成本具有重要意义。  相似文献   

13.
采用微波辅助快速芬顿组合工艺,对深圳某废水处理厂复杂有机废水进行芬顿氧化预处理,以达到该厂生化进水指标。实验结果表明,在Fe~(2+)投加量为54 mmol/L,H_2O_2投加量为222 mmol/L,微波功率为6 kW,水力停留时间为10 min的条件下,可使废水COD从7000 mg/L左右处理到2500 mg/L以下,COD去除率可达65%以上,同时废水的可生化性也得到提高。  相似文献   

14.
利用芬顿氧化法对以氨三乙酸和乙二胺四乙酸为配位剂、总镉浓度为30 mg/L的电镀镉废水进行处理。研究了H_2O_2/Fe~(2+)摩尔比,初始p H,H_2O_2投加量,以及反应温度和时间对镉残余质量浓度与去除率的影响。结果表明,当H_2O_2投加量为0.97 g/L,H_2O_2/Fe~(2+)摩尔比为1∶4,初始pH为3时,在20°C下反应20 min后加碱沉淀并过滤,滤液中残余镉的质量浓度为1.31 mg/L,镉的去除率达到95.6%。  相似文献   

15.
考察铁屑投加量、碳铁质量比、废水pH、曝气量、反应时间对品红废水脱色率、COD去除率的影响,采用芬顿法进一步处理微电解出水。结果表明,在废水pH 2.5,铁屑投加量60 g/L,碳铁质量比2∶1,曝气量600 mL/(min·L),反应时间3 h处理效果最好,脱色率和COD去除率分别达到了94.42%,66.28%;不调节微电解出水pH,投加12 mL/L FeSO_4(浓度0.1 mol/L),6 mL/L H_2O_2(质量分数30%),反应20 min,出水COD 55.49 mg/L,色度58.9倍。  相似文献   

16.
考察铁屑投加量、碳铁质量比、废水pH、曝气量、反应时间对品红废水脱色率、COD去除率的影响,采用芬顿法进一步处理微电解出水。结果表明,在废水pH 2.5,铁屑投加量60 g/L,碳铁质量比2∶1,曝气量600 mL/(min·L),反应时间3 h处理效果最好,脱色率和COD去除率分别达到了94.42%,66.28%;不调节微电解出水pH,投加12 mL/L FeSO_4(浓度0.1 mol/L),6 mL/L H_2O_2(质量分数30%),反应20 min,出水COD 55.49 mg/L,色度58.9倍。  相似文献   

17.
Fenton氧化法是处理难生物降解的苯胺废水的有效方法。本文以苯胺去除率和COD去除率为指标,采用控制变量法探究Fe~(2+)投加量、H_2O_2投加量以及pH值等因素对Fenton试剂处理模拟苯胺废水的处理效果,分析Fenton试剂降解苯胺的机理。研究结果表明,对于浓度为10μg/mL的模拟苯胺废水,当0.5mol/L的FeSO_4溶液投加量为2.5mL、30%H_2O_2溶液投加量为1.5mL(Fe~(2+)与H_2O_2物质的量比约为10∶1),溶液pH值为3.0左右时,苯胺去除率可达到88%;在投加溶液稀释相同的倍数情况下,相应COD去除率可达到68%,为后续的生化处理提供有效条件。  相似文献   

18.
针对某氟化学有限公司高盐废水,考察了铁碳微电解耦合芬顿催化氧化技术对废水化学需氧量(COD)的去除性能。研究分析了不同停留时间(HRT)、pH、n(Fe~(2+)):n(H_2O_2)等影响因素对废水COD去除效率的影响。研究结果显示在最优条件下(pH=2.0,铁碳HRT=4 h,芬顿HRT=2.5 h,n(Fe~(2+)):n(H_2O_2)=1:3),处理效果较好,出水COD满足污水综合排放标准GB 8978—1996三级标准。  相似文献   

19.
以零价铁类芬顿法处理含低浓度重金属离子的有机废水,研究了初始pH值,H_2O_2投加量,反应时间,铁刨花投加量对实验的影响,探究了该法对化学需氧量(COD)和金属离子的去除机理。实验结果表明:初始pH值和H_2O_2投加量对处理效果影响比较大,最佳条件是初始pH值为3,H_2O_2投加量为1.5 mL/L,反应时间为60 min,铁刨花投加量为30 g/L,零价铁类芬顿法对废水中COD,Cu~(2+),Ni~(2+)和Pb~(2+)的去除率分别达到71%,98%,97%和98%,去除效果优于传统芬顿法。铁刨花在重复利用5次后,对COD和Cu~(2+)的去除率仍然分别保持在60%和88%以上,可见重复利用性好。因此,零价铁类芬顿法在处理此废水有良好的应用前景。  相似文献   

20.
为降低出水COD,提高采油废水的可生化性,采用O_3、O_3/H_2O_2组合工艺对某油田采油废水进行处理,考察氧化反应时间、O_3质量浓度、pH、H_2O_2投加量、n(H_2O_2)∶n(O_3)对废水处理效果的影响。结果表明,单独使用O_3处理油田采油废水时,在O_3为20 mg/L、反应时间为60 min、废水pH为8.50条件下,COD去除率为28.5%,B/C由0.08提至0.248;O_3/H_2O_2组合工艺的处理效果更显著,在O_3为30 mg/L、反应时间为60 min、H_2O_2投加量为0.24 g/L、废水pH为8.50的最佳条件下,COD去除率达到55.4%,B/C提升至0.440。氧化处理不仅降低了废水COD,还可提高废水的可生化性,是一种较为有效的预处理技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号