首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
地质聚合物作为新兴绿色无机胶凝材料,因独特的三维网络骨架结构而兼具矿物和高分子材料的特性。分别以固体废弃物粉煤灰和偏高岭土为原料,采用碱激发方式制备地质聚合物试块,考察养护28 d后试块在5%HCl、10%NaOH、5%MgCl2+5%NaCl和5%H2SO4(均为质量分数)溶液中浸泡1~84 d的耐化学侵蚀能力。X射线衍射仪(XRD)、扫描电子显微镜(SEM)及试块质量、抗压强度测试表明,不同浸泡环境所引起地质聚合物胶凝材料的响应差异较大,粉煤灰基地质聚合物表现出较优异的耐低浓度硫酸、氢氧化钠、盐溶液侵蚀性能,微观结构及外观形貌稳定,试块质量和抗压强度稳定。偏高岭土基地质聚合物在盐溶液中性条件下结构和性能较稳定。在盐酸环境下两种地质聚合物被腐蚀明显,质量损失率大,抗压强度降低显著。对比研究表明,粉煤灰基地质聚合物的耐低浓度酸、碱溶液腐蚀性明显优于偏高岭土基地质聚合物。上述两类地质聚合物可潜在应用于海洋建筑领域。  相似文献   

2.
为探索粉煤灰基地质聚合物的力学特性,通过12组胶砂试样的抗折和抗压强度研究NaOH掺量、养护条件、龄期和碱渣掺量对力学性能的影响,对比不同因素下试样胶砂表面孔隙特征,分析了碱渣对粉煤灰基地质聚合物体系的改性机理.结果表明:1.NaOH溶液过剩使强度降低;高温养护能提高强度;粉煤灰基地质聚合物的养护不需要太大的湿度.2.碱渣掺量小于27%时,对粉煤灰-NaOH体系强度有显著的改性作用.CaCO3增大溶液碱性,减小胶砂流动性,影响地质聚合物的微观结构,有效改善体系收缩程度.3.可溶性含钙组分中Ca2参与生成C-SH凝胶,与地质聚合物协同作用提高胶结性,减小孔隙的连通性.  相似文献   

3.
以Cr Cl_3·6H_2O作为三价铬源,采用碱激发和水热法制备了掺Cr~(3+)偏高岭土-粉煤灰基地聚合物。研究了掺Cr~(3+)偏高岭土-粉煤灰基地聚合物的结构组成、微观形貌、力学性能以及Cr~(3+)的固化机理和固化率。XRD研究结果表明:掺Cr~(3+)偏高岭土-粉煤灰基地聚合物的物相组成主要为无定形相,改变水热温度(60~180℃)和Cr~(3+)掺量不会影响其物相组成。抗压强度测试结果表明:掺Cr~(3+)偏高岭土-粉煤灰基地聚合物具有较高的力学性能且抗压强度随着Cr~(3+)掺量的增加先增大后减小。FT-IR和毒性浸出结果表明:Cr~(3+)能够以化学吸附的形式参与聚合反应而被固定,偏高岭土-粉煤灰基地聚合物对Cr~(3+)的固化率均在99%以上。  相似文献   

4.
赵启迪  薛平  贾明印  王旌硕 《硅酸盐通报》2018,37(10):3141-3146
针对地质聚合物存在脆性大、韧性差的特点,选用聚乙烯醇、聚乙二醇、聚丙烯酰胺(阳离子)和聚丙烯酰胺(阴离子)四种水溶性有机粉对粉煤灰-矿粉基地质聚合物进行改性.结合宏观力学强度以及微观测试手段,对四种水溶性有机物的增韧效果及原理进行研究.通过研究发现聚乙烯醇没法同时满足抗折抗压两种性能指标的增韧,聚乙二醇的掺入则会导致地质聚合物的抗压强度降低,而聚丙烯酰胺(阴离子)增韧地质聚合物压折比过大,并未实现增韧的效果.所以聚丙烯酰胺(阳离子)增韧效果最佳,当掺量为4wt%时,抗折强度达到8.7 MPa,抗压强度达到41.5 MPa,压折比为4.7,降低了24%,增韧效果较明显.  相似文献   

5.
为了响应“双碳”政策节能减排的号召,本文采用偏高岭土和高炉矿渣为原材料制备地质聚合物。以抗压强度为指标优化制备条件,探讨确定影响地质聚合物强度的因素。通过正交试验确定偏高岭土基地质聚合物的最佳配比,通过热重和XRD分析不同温度煅烧的偏高岭土组分。研究结果表明,在高岭土煅烧温度为800 ℃时,偏高岭土基地质聚合物的最佳配合比为氢氧化钠与硅酸钠的质量比为6.5∶1,激发剂的质量掺量为14.2%,其28 d抗压强度能达到46.6 MPa。偏高岭土基地质聚合物抗压强度随激发剂的掺量增加而增大,随氢氧化钠与硅酸钠的质量比的增大先增大后减小,随高岭土煅烧温度的升高先增大后减小。  相似文献   

6.
由于碱激发硅灰粉煤厌复配地质聚合物的韧性较差,本文利用聚丙烯酸树脂TC-200对其进行增韧及表征.结果表明,TC-200最佳掺量为1 wt%时,试样的抗压抗折强度同时增大,压折比减小,韧性显著提高.结合XRD、SEM分析和Griffith理论证实了TC-200可改变粉煤灰基地质聚合物内部的裂缝表面能,从而达到增韧的效果.  相似文献   

7.
以工业固体废弃物富镁镍渣和粉煤灰为原料,以水玻璃和NaOH为碱激发剂,制备了一系列富镁镍渣-粉煤灰基地质聚合物。研究了不同粉煤灰掺量对地质聚合物力学性能的影响,并测定地质聚合物的线性收缩和碱溶出,通过XRD、IR、DTA等手段对产物进行表征。结果表明:富镁镍渣-粉煤灰基地质聚合物的强度随粉煤灰的掺入先升高后降低,当掺量为30%(质量分数)时,地质聚合物的抗压强度可达最高值22.15 MPa,较镍渣基地质聚合物强度提高42.2%;XRD分析表明富镁镍渣中MgO以镁橄榄石相存在,而非游离态,故地质聚合物具有良好的体积安定性。  相似文献   

8.
以粉煤灰(FA)和硅灰(SF)为主要原料制备碱激发地质聚合物胶凝材料,运用XRD、SEM、EDS及FTIR等测试手段研究了SF与FA的质量比(SF/FA)及不同碱激发剂(NaOH和KOH)对粉煤灰-硅灰基地质聚合物砂浆力学性能及组织结构的影响.研究结果表明,随着SF/FA的增大,碱激发粉煤灰-硅灰基地质聚合物的抗压强度和抗折强度逐渐增大,最高可分别达到23.89 MPa和6.60 MPa,NaOH的激发效果强于KOH.碱激发粉煤灰-硅灰基地质聚合物结构中新生成了菱沸石相和无定形N-A-S-H凝胶相,FA和SF反应不完全,结构中仍存在未反应的FA颗粒及SF颗粒.FTIR结果表明N-A-S-H相的存在,随着SF/FA的增大,碱激发粉煤灰-硅灰基地质聚合物中[AlO6]9-八面体和[AlO4]5-四面体发生了结构重组,配位状态进一步完善,且T-O-Si(T=Al,Si)发生了聚合,致使地质聚合物强度逐渐增大.  相似文献   

9.
王晶  张耀君  王亚超 《硅酸盐通报》2013,32(7):1432-1437
本文采用双掺沥青和聚丙烯纤维对碱激发粉煤灰-矿渣基地质聚合物进行了强化增韧研究.结果表明当沥青及聚丙烯纤维掺量分别为1wt%和0.6wt%时,地质聚合物28 d龄期表现出9.7 MPa的最高抗折强度.XRD物相分析结果表明,双掺沥青和聚丙烯纤维对该地质聚合物的物相结构没有造成影响.SEM结合断裂韧度计算结果发现纤维与地质聚合物基体结合紧密,纤维的拔出长度较长,表明聚丙烯纤维可以提高试件的断裂韧度,达到增韧效果.  相似文献   

10.
研究了以粉煤灰替代偏高岭土为主要原料制备的地质聚合物胶凝材料的抗压强度,并用SEM观察其微观形貌。结果表明,用含有质量分数20%、40%、60%粉煤灰替代偏高岭土为原料制得的地质聚合物,其受压破坏面物相成分较杂乱,有较多的球状粉煤灰颗粒和裂缝;与单用偏高岭土作原料制备的地质聚合物相比,试样各龄期抗压强度值均不高。  相似文献   

11.
在采用偏高岭土碱激发制备地质聚合物的基础上,优化配合比,为制备出早期强度较高的地质聚合物。以NaOH和水玻璃为复合碱激发剂,研究水玻璃模数、碱当量、液固比以及养护条件对偏高岭土地质聚合物抗压强度的影响。试验结果表明,偏高岭土130g、水玻璃模数1.0、碱当量11%、液固比0.31、标准养护时,制备的偏高岭土地质聚合物3d抗压强度最高,达到53.7MPa。另外,在初始液固比为0.31时,不同模数下的地质聚合物强度都达到最佳。本文为偏高岭土地质聚合物的制备提供了有效的借鉴。  相似文献   

12.
偏高岭土基地质聚合物在土木工程领域具有广泛的应用前景,其中偏高岭土的活性对生成的地质聚合物性能具有重要影响.评定偏高岭土活性的最直接方法是比较生成的偏高岭土基地质聚合物的抗压强度,但该方法周期较长,不利于实用.本文通过对高温煅烧后偏高岭土的DSC-TG分析、XRD分析和NMR分析,讨论了偏高岭土活性与其中活性氧化铝含量的相关性,探索了偏高岭土的高温活化机理和活性测定原理,提出了改进的滴定络合法和紫外分光光度计法并应用于偏高岭土活性测定,进而通过偏高岭土地聚物的力学性能试验予以验证.试验结果表明,煅烧温度对偏高岭土的活性有显著影响,随煅烧温度升高呈现先提高后降低的规律;滴定络合法和紫外分光光度计法可以测定铝的溶出率并且用于偏高岭土活性的快速测定.  相似文献   

13.
王立宁  陈振  张增志 《硅酸盐通报》2020,39(7):2085-2091
将矿渣分别与粉煤灰、偏高岭土混合作为主要原料,以过氧化氢为发泡剂制备两种地质聚合物多孔材料.结合体式显微镜和Image-Pro Plus图像分析技术等测试手段,对多孔地质聚合物气孔结构进行表征,研究了不同过氧化氢用量对矿渣基地质聚合物多孔材料气孔结构、吸水性、释水性以及集水性的影响.分析不同过氧化氢用量制备的多孔地质聚合物气孔结构与吸水性、释水性的关系,进而得出材料兼具吸水性和释水性时的过氧化氢用量.研究结果显示,随着发泡剂用量的增加,地质聚合物泡孔尺寸随之增大,吸水性和集水性也有提升,释去单位质量的水所用时间明显减少.  相似文献   

14.
水热条件下偏高岭土-粉煤灰地聚合物性能研究   总被引:2,自引:0,他引:2  
通过抗压强度测试和MIP、XRD、SEM分析等方法,研究了偏高岭土与粉煤灰配比对地聚合物性能的影响.结果表明:粉煤灰掺量的增大有利于地聚合物抗压强度的提高,50℃养护3d和7d时,粉煤灰地聚合物抗压强度较偏高岭土地聚合物分别提高了64.7%和116.0%.MIP和SEM分析表明,粉煤灰掺量的增大可有效提高地聚合物的结构致密性,XRD分析表明,粉煤灰掺入偏高岭土中,经碱激发作用在25°~35°间形成了无定型粉煤灰地聚合物的弥散衍射峰,有利于偏高岭土-粉煤灰地聚合物性能的提高.  相似文献   

15.
荆锐  刘宇  张慧杰  夏阳  阎培渝 《硅酸盐通报》2020,39(10):3237-3243
研究了水胶比为0.4,水玻璃模数为1.4及Na2O含量为10%(质量分数)时,单掺偏高岭土与复掺偏高岭土和粉煤灰对碱-矿渣复合胶凝材料的凝结时间和早期力学性能的影响.结果 表明,两种复合方式对碱-矿渣复合胶凝材料均有缓凝作用,但复掺时的缓凝效果更明显.单掺时,碱-矿渣复合胶凝材料的早期抗折、抗压强度和折压比基本不随偏高岭土掺量的变化而变化,但其28 d粘接强度随偏高岭土掺量的增加而增大.复掺时,碱-矿渣复合胶凝材料早期抗压强度随粉煤灰掺量的增加而减小;与单掺时相比,该复合胶凝材料72 h抗折强度和折压比分别提高了40%和64%.除此之外,复掺时该复合胶凝材料28 d粘接强度比单掺时提高了45%,但粉煤灰掺量的影响较小.  相似文献   

16.
以粉煤灰和铸造粉尘为主要原料,以KOH、NaOH、Na2SiO3、K2SiO3和水玻璃为碱激发剂,制备地质聚合物.研究了不同激发剂对铸造粉尘-粉煤灰基地质聚合物抗压强度的影响.结果表明:不同浓度的NaOH和KOH溶液的激发效果较差,制备的铸造粉尘-粉煤灰基地质聚合物的抗压强度较低.NaOH和KOH溶液与K2SiO3溶液混配复合激发剂可提高铸造粉尘-粉煤灰基地质聚合物的抗压强度.水玻璃溶液激发效果最好,随着水玻璃溶液模数的增加,铸造粉尘-粉煤灰基地质聚合物的抗压强度逐渐提高;当水玻璃模数为1.2时,铸造粉尘基地质聚合物28 d抗压强度达到最大,为21.4 MPa;继续增大水玻璃模数,铸造粉尘-粉煤灰基地质聚合物28 d抗压强度趋于下降.  相似文献   

17.
以改性钠水玻璃激发粉煤灰、偏高岭土和硅灰等复合硅、铝固体原料,采用混合正交实验设计方法,确定了固化重金属离子用地质聚合物基体的配方并初步研究了基体与Cu2+、Pb2+的相容性.结果表明:在常温(20℃)养护条件下、n(SiO2)/n(Al2O3)=4.0、水玻璃模数M=1.2时,可以获得制备性能和力学性能良好的地质聚合物基体,相应的固体原材料组成为:粉煤灰和偏高岭土的质量比为13∶7、硅灰掺量为粉煤灰和偏高岭土总量的18.5%;地质聚合物基体与Cu2+和Pb2+均具有较好的相容性;适当掺量的Cu2+和Pb2+在一定程度上能增加地质聚合物的抗压强度,在掺量达到2%时,固化体均具有较好的强度,能达到资源化利用的目的.  相似文献   

18.
基于地质聚合物反应机理,以赤泥为主要原料,磷酸为激发剂,通过添加适量偏高岭土和有机硅消泡剂,制备出性能良好的赤泥基地质聚合物涂料。研究结果表明:较优配比是m(赤泥)∶m(磷酸)∶m(水)∶m(偏高岭土)∶m(消泡剂)=5∶5∶2.5∶0.5∶0.5,所制备得到的赤泥基地质聚合物涂料耐高温和附着性能好,防水耐酸雨侵蚀,防火隔热效果好。  相似文献   

19.
以粉煤灰为主要原料,以铸造粉尘为掺合料,水玻璃溶液为碱激发剂,制备地质聚合物.研究了养护龄期和水灰比对铸造粉尘-粉煤灰基地质聚合物抗压强度的影响.结果表明,铸造粉尘-粉煤灰基地质聚合物的抗压强度随养护龄期的延长而增大,随水灰比的增大先增大后减小;当水玻璃模数为1.2,水灰比为0.4时,地质聚合物28 d抗压强度达到最大,为21.4 MPa.X衍射分析表明,形成的地质聚合物主要为无定形矿物相;红外光谱分析表明,地质聚合物中有较多的非晶态铝硅酸盐生成;SEM分析显示地质聚合物具有良好的致密结构.  相似文献   

20.
研究了硅烷偶联剂对偏高岭土基地聚合物韧性的影响,通过抗压,抗折,孔径分布,红外光谱,X射线衍射和扫描电镜等测试,分析了硅烷偶联剂对地聚合物力学性能和微观结构的影响.结果表明:硅烷偶联剂的掺入使抗折强度先升高再降低,而抗压强度降低.当激发剂浓度为38%,硅烷偶联剂掺量为1wt%时,地聚合物的抗折强度为11.1 MPa,较纯地聚合物提高了2.3 MPa,折压比提高了30%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号