首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A conventional reactive distillation column will not be able to produce high purity isopropyl acetate (IPAc) due to the existence of a minimum boiling azeotrope in the system. In this work, a novel reactive and extractive distillation (RED) process was proposed and used for the synthesis of IPAc. Results showed that the purity of IPAc reached 99.5%. Then, the RED flowsheet was optimized with minimum total annual cost (TAC), and a number of key variables were determined with the assistance of program written in Visual Basic 6.0 (VB). After that, two control structures of the RED process were developed: a basic control structure with temperature/proportional cascade control and an improved control structure with composition/temperature cascade control. The integral of squared error (ISE) was introduced to evaluate the performance of control systems, it revealed that the improved control structure had better controllability.  相似文献   

2.
Production of pure ethyl acetate (EtAc) is a difficult and heavy energy consuming process. In this work, a novel reactive distillation (RD) process for EtAc production intensified by the hydration of ethylene oxide (EO), as an auxiliary reaction, is proposed for removing the EtAc/water azeotrope. Impacts of three important parameters, i.e., ethanol (EtOH) flow rate, EO flow rate and reflux ratio on temperature and component compositions along the RD column are investigated to achieve an optimal process design. The proposed RD process predicts the pure EtAc and ethylene glycol (EG) with low energy requirements. The results show that the proper feed rates of EtOH, EO and acetic acid are 0.45 mol/s, 0.45 mol/s and 0.42 mol/s, respectively, when the reflux ratio is 3.5.  相似文献   

3.
Based on a previous investigation, a simulation model was used for optimization of coproduction of ethyl acetate and n-butyl acetate by reactive distil ation. An experimental setup was established to verify the simulated results. The effects of various operating variables, such as ethanol feed location, acetic acid feed location, feed stage of reaction mixture of acetic acid and n-butanol, reflux ratio of ethyl acetate reactive distillation column, and distil-late to feed ratio of n-butyl acetate column, on the ethanol/n-butanol conversions, ethyl acetate/n-butyl acetate purity, and energy consumption were investigated. The optimal results in the simulation study are as follows:ethanol feed location, 15th stage;acetic acid feed location, eighth stage;feed location of reaction mixture of acetic acid and n-butanol, eighth stage;reflux ratio of ethyl acetate reactive distillation column, 2.0;and distillate to feed ratio of n-butyl acetate, 0.6.  相似文献   

4.
This paper designs an entrainer combined with a sidedraw to enhance the reactive distillation (RD) process of isopropyl acetate (IPAc). Acetic acid (HAc) reacts with isopropanol (IPOH) to generate IPAc and water (H2O). The ratio of IPAc to H2O in the products of esterification is smaller than that in the minimum boiling IPAc–IPOH–H2O azeotrope, resulting in a mass of organic phase reflux to remove the surplus H2O from the top of the RD column. This process consumes a high amount of energy. For better energy efficiency, a feasible design flowsheet includes an RD column, a stripper, a top decanter, a middle decanter, and a sidedraw stream to intensify the azeotropic separation where an entrainer is introduced to carry out the surplus water from the middle of the RD column in the form of a liquid phase. The key design variables in the proposed flowsheet are determined to obtain a minimal total annual cost (TAC). As a result, an optimal process design is drawn out while satisfying the stringent specifications for product purity. These results show that the energy requirements of the IPAc system can be decreased by 27.55%.  相似文献   

5.
催化精馏合成乙酸乙酯   总被引:2,自引:0,他引:2  
以乙酸、乙醇为原料,阳离子交换树脂为催化剂,在自制精馏塔内催化精馏酯化合成乙酸乙酯.以捆扎包作为催化剂装填方式,并考察了催化剂布包材料、乙醇进料位置、空速、回流比、进料酸醇物质的量之比对乙醇转化率和塔顶产品中乙酸乙酯含量的影响.结果表明,合适的条件为催化剂布包采用尼龙布材料,乙醇进料位置在催化段底部,空速为0.213 h-1,进料酸醇物质的量之比3:1,回流比1.0.该工艺条件下,乙醇转化率为97.16%,塔顶乙酸乙酯的质量分数为95.44%.  相似文献   

6.
共沸蒸馏在化工生产中的应用与研究进展   总被引:1,自引:0,他引:1  
共沸蒸馏为共沸物或相对挥发度接近于1的非理想物系的分离过程提供了选择。介绍了蒸馏残余曲线图的热力学原理,并以反应蒸馏生产乙酸乙酯工艺为例说明了蒸馏残余曲线图在流程设计等方面的应用。分别从夹带剂选择、过程设计、过程集成强化、过程控制等角度阐述了共沸蒸馏过程相关理论研究进展;在应用方面,主要综述了乙醇、异丙醇稀溶液、稀乙酸等脱水及回收利用情况,共沸蒸馏过程强化反应蒸馏、变压共沸蒸馏、共沸蒸馏耦合膜分离研究进展情况以及反应蒸馏工艺的局限性,并对其未来的发展前景作了展望。  相似文献   

7.
杨柳  张雷 《当代化工》2014,(7):1382-1385
利用Aspen Plus模拟了合成醋酸正丁酯的反应精馏过程,并分析各工艺参数对产品纯度和再沸器热负荷影响。通过优化得出最佳工艺参数为:理论塔板数为16;精馏段、反应段和提馏段塔板数分别为5、7和4;醋酸和正丁醇的进料塔板数分别为5和7;酸醇进料比为1:1;回流比为1。在此条件下产品醋酸正丁酯的纯度达99.55%;乙酸的转化率达99.71%,再沸器的能耗较低。  相似文献   

8.
采用强酸性阳离子交换树脂催化醋酸与甲醇反应精馏生成醋酸甲酯,可避免硫酸作为催化剂的不足。但该非均相催化反应受平衡限制,且达到平衡时间较长,采用传统反应精馏塔难以提供足够反应空间。文中设计侧反应器与精馏塔耦合新工艺,采用Aspen Plus软件模拟研究了侧反应器数量、位置,原料进料位置,回流比,醇酸比等对反应精馏过程的影响。结果表明,当装置具有7个侧反应器,反应器间隔4块板,在优化的操作条件下,醋酸甲酯质量分数可达99.1%。  相似文献   

9.
The performance of the reactive distillation dividing‐wall column for coproduction of ethyl acetate and butyl acetate was experimentally studied. n‐Butanol and ethanol are raw reaction materials that react with acetic acid in the reaction zone to produce n‐butyl acetate and ethyl acetate, respectively. n‐Butyl acetate is not only a product, but also acts to remove water generated by the esterification reactions. The effects of various parameters, such as catalyst loading per stage, reflux ratio, liquid split and molar feed ratios, ethyl acetate/n‐butyl acetate purity, pressure drop, and total energy consumption, are investigated. Results show that ethanol could be completely converted and the products could be easily separated, which shows great industrial application potential in the coproduction of ethyl acetate and n‐butyl acetate.  相似文献   

10.
浆料催化精馏制备醋酸甲酯   总被引:5,自引:0,他引:5  
在内径为76 mm的常压玻璃塔内,精馏段填充θ环,反应段为筛板,以甲醇与醋酸酯化反应合成醋酸甲酯为模型反应,采用平均粒径为4μm的强酸性大孔型离子交换树脂为催化剂,对浆料催化精馏工艺制备醋酸甲酯进行了试验研究。考察了催化剂浓度、进料比、进料总流量和回流比等因素对该过程的影响。在选定的试验条件下,醋酸甲酯收率可达86.4%,塔顶酯的纯度可达92.95%(质量分数)。  相似文献   

11.
乙酸乙酯的精制方法   总被引:3,自引:0,他引:3  
介绍了几种乙酸乙酯的精制方法,并分析了它们的优缺点。分别介绍了用乙酸和乙醇酯化反应合成乙酸乙酯,通常可采用传统的四塔连续工艺过程;添加促进剂萃取精制过程;加饱和盐水萃取脱水工艺过程;加有机溶剂萃取分离过程;加恒沸剂共沸蒸馏和乙酸萃取反应精馏过程。乙醛缩合法生产乙酸乙酯的三塔连续精馏过程以及乙烯与乙酸气相催化反应的加水精制工艺过程。  相似文献   

12.
以乙酸和乙醇为原料、以杂多酸磷钨酸为催化剂,采用间歇式进料、反应精馏技术合成乙酸乙酯,对合成工艺条件进行了研究,时产物组成进行了气相色谱分析.确定反应精馏法合成乙酸乙酯的最佳工艺条件为:反应温度84~90℃、酸醇体积比1.4:1、回流比4:1、反应时间1.5 h、催化剂用量0.9 g,在此条件下,乙酸转化率达到83%、...  相似文献   

13.
利用1-己基吡啶四氟硼酸盐离子液体作溶剂和催化剂,在催化反应精馏塔内合成乙酸乙酯。结果表明该离子液体具有催化活性,反应的选择性为100%,分离后的1-已基吡啶四氟硼酸盐离子液体重复使用5次,其活性没有明显变化。考察了回流比、进料比、溶剂和催化剂用量对酯化反应结果的影响,优化了反应的工艺条件,适宜的反应条件为:物料比n(乙酸):n(乙醇)=1.1:1,离子液体用量n(乙酸):n(离子液体)=8:1,回流比为3。  相似文献   

14.
催化精馏合成醋酸甲酯的研究   总被引:3,自引:0,他引:3  
以强酸型阳离子交换树脂为催化剂,在直径为40 mm的填料塔内对催化精馏合成醋酸甲酯进行了研究。实验塔的三段填料高度分别为810、270、450 mm,填料段之间放置直径为60 mm、高度为175 mm的2节催化剂床层,并在塔釜放置催化剂。采用连续操作,着重考察了醇酸进料摩尔比、醋酸进料位置、甲醇进料位置和回流比对催化精馏合成醋酸甲酯的影响。在选定实验条件下,塔顶醋酸甲酯的质量分数可达到98.43%,醋酸的转化率达到99.13%。  相似文献   

15.
反应精馏法制备醋酸甲酯的研究   总被引:1,自引:0,他引:1  
以醋酸、甲醇为原料,以浓硫酸为催化剂,对反应精馏法制备醋酸甲酯的过程进行了实验研究。着重考察了回流比、进料中醋酸摩尔分率、塔板数及混酸进料位置等因素对反应转化率和塔顶产品中醋酸甲酯含量的影响,并得出最佳的工艺条件。  相似文献   

16.
In a polyvinyl alcohol (PVA) plant, reaction stoichiometry indicates that equal molar of methyl acetate is generated for every mole of PVA produced. This work explores an alternative to convert methyl acetate back to acetic acid (raw materials of PVA plant), methyl acetate (MeAc) hydrolysis. The design and control of methyl acetate hydrolysis using reactive distillation is studied. Because of the small chemical equilibrium constant (∼0.013) and unfavorable boiling point ranking (MeAc being the lightest boiler), the reactive distillation exhibits the following characteristics: (1) total reflux operation and (2) excess reactant (water) design. The proposed flowsheet consists of one reactive distillation column with a reactive reflux drum, two separation columns, and one water-rich recycle stream. A systematic design procedure is used to generate the flowsheet based on the total annual cost (TAC). Two dominate design variables are: recycle flow rate (for the degree of excess in water) and the overhead impurity level of acetic acid in the product column (to avoid tangent pinch). Finally, the operability of the hydrolysis plant is evaluated. A plantwide control structure is developed followed by process identification and controller tuning. The results show that reasonable control performance can be achieved using simple temperature control for feed flow and feed composition disturbances.  相似文献   

17.
Four process alternatives for the production of isoamyl acetate, by the liquid phase esterification of acetic acid with isoamyl alcohol, were evaluated by simulation in terms of product purity, energy integration and economics. The analysis involves a transition from conventional (two structures that use acetic acid or alcohol in excess) to hybrid membrane process (two distillation–pervaporation hybrid systems). Acetate recovery is identified as a crucial factor to minimize energy costs in all considered processes. For conventional processes, the amount of energy required for separation, at low acetate recovery levels, is considerably lower if acetic acid is used in excess. For the hybrid processes, there is an optimum value of acetate recovery that minimizes the total required heat duty and membrane area. Hybrid distillation–pervaporation process allows obtaining the specified product purity with lower energy requirements and more economical tradeoffs than the considered conventional processes. The economic optimum design maximizes energy savings and minimizes total annualized costs. After optimization and energy integration, the best process alternative includes, in a hybrid system, one packed bed reactor, two pervaporation units and a distillation column.  相似文献   

18.
The recovery of dilute acetic acid, regarding as a waste stream in many chemical and petrochemical processes, becomes an important issue due to economic and environmental awareness. In this work, a simulation study on the direct utilization of dilute acetic acid to produce n-butyl acetate via esterification with butanol in a reactive distillation is presented by using Aspen Plus. The performance of a hybrid reactive distillation with a pretreatment unit, i.e., a conventional distillation or a pervaporation, is investigated. For a single reactive distillation system, it is found that higher overall energy of the system is required when the concentration of acetic acid is lowered. By considering the enrichment of acetic acid in the reactive distillation column feed from 35 to 65 wt.%, a hybrid pervaporation–reactive distillation requires lower energy than both the conventional distillation–reactive distillation system and the single reactive distillation.  相似文献   

19.
利用1,4-丁二醇与乙酸甲酯-甲醇二元恒沸物形成三元恒沸物,研究了乙酸甲酯与甲醇恒沸物的分离工艺。实验采用精馏、常压蒸馏、减压蒸馏及冷冻的方法,主要研究了各种方法对甲醇分离的影响,并获得了较佳的工艺条件。研究得出常压蒸馏法可行,乙酸甲酯纯度达到99.7%,收率98.1%,甲醇纯度96.1%,收率95.2%。  相似文献   

20.
The recovery of dilute acetic acid, which is widely found as a by-product in many chemical and petrochemical industries, becomes an important issue due to economic and environmental awareness. In general, separation of acetic acid in aqueous solution by conventional distillation columns is difficult, requiring a column with many stages and high energy consumption. As a result, the primary concern of the present study is the application of reactive distillation as a potential alternative method to recover dilute acetic acid. The direct use of dilute acetic acid as reactant for esterification with butanol to produce butyl acetate in the reactive distillation is investigated. Simulation studies are performed in order to investigate effect of the concentration of dilute acetic acid and key process parameters on the performance of the reactive distillation in terms of acetic acid conversion and butyl acetate production. In addition, three alternative control strategies are studied for the closed loop control of the reactive distillation. The control objective is to maintain the butyl acetate in a bottom product stream at the desired purity of 99.5 wt%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号