首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
《Ceramics International》2017,43(10):7607-7617
The carbon fiber reinforced/carbon-boron nitride (C/C-BN) dual matrix composites were fabricated via adding hexagonal boron nitride (h-BN) powders into the needled carbon felt and subsequent chemical vapor infiltration (CVI) process. An experimental investigation was performed to study the influences of BN volume content on the microstructures and tribological properties of C/C-BN composites. The results indicate that the pyrolytic carbon (PyC) in the C/C-BN composites is regenerative laminar (ReL) due to the inducement of BN powders during CVI process, whereas the PyC in the C/C composite is classic smooth laminar. Additionally, the friction coefficients of C/C-BN composites with three different BN contents in volume fractions (4.5, 9 and 13.5 vol%) are all higher compared to the reference C/C composite (0.22). Note that the highest coefficient of friction (0.29) is obtained when the BN volume content in the C/C-BN composite is 9 vol%. Moreover, the linear and mass wear rates of C/C-BN composites as well as the 30CrSiMoVA counterparts are significantly decreased with the increase of BN volume content. The favorable friction and wear properties of C/C-BN composites are attributed to the synergistic effect induced by the ReL PyC and BN. The microstructural variation of C/C composites modified by h-BN could improve the compatibility between the C/C-BN composites and 30CrSiMoVA counterpart, resulting in an enhanced adhesive attraction between the wear debris and the surface of 30CrSiMoVA counterpart. Furthermore, the investigations concerning the friction surfaces indicate that the formation of sheet-like friction films with large areas are more easily to occur on the surfaces of 30CrSiMoVA counterparts mating with the C/C-BN composites rather than mating with the C/C composite.  相似文献   

2.
Steven Seghi  Brian Fabio 《Carbon》2004,42(15):3043-3048
This paper describes the fabrication of a carbon fiber reinforced/carbon-boron nitride (C/C-BN) hybrid matrix composite for possible use in aircraft brakes. These composites were fabricated via liquid infiltration of a liquid crystalline borazine oligomer into a low-density carbon fiber/carbon matrix (C/C) composite. The friction and wear properties of the C/C-BN were explored over the entire energy spectrum for aircraft braking using an inertial brake dynamometer. The C/C-BN composites with densities of 1.55 g/cc displayed wear rates 50% lower than values observed with C/C samples with densities of approximately 1.75-1.8 g/cc. This includes the near elimination of wear from 300 to 600 kJ/kg, which represents the normal landing regime for aircraft brakes. This encouraging behavior is attributed in part to the improved oxidation resistance of the BN at high energy levels and the ability of the BN to facilitate formation of a stable wear film at lower energy levels. The coefficient of friction, while being slightly lower than the values for C/C, appeared much less sensitive to changes in energy level.  相似文献   

3.
通过化学气相渗透法(CVI)制备出一种新型的"三明治"结构的C/C复合材料。其两侧是纯网胎结构的功能层,主要承担摩擦功能;中间为承担结构作用的结构层,与传统针刺毡结构一致。系统研究了材料的微观组织结构特征及其摩擦磨损性能。结果表明:"三明治"C/C复合材料各个区域的热解炭都为粗糙层结构;刹车性能较传统三维针刺结构C/C复合材料的摩擦性能稳定;在摩擦试验过程中,摩擦面能够形成一层连续均匀的薄膜,使材料在刹车过程中具有较稳定的摩擦系数并能够有效降低材料的磨损率。  相似文献   

4.
采用针刺全炭纤维网胎无纬布整体结构预制体为骨架,经化学气相沉积(CVD)、树脂浸溃(RD固化致密及炭化、石墨化制得C/C复合材料。研究了粗糙层(RL)和树脂炭(RC)对摩擦性能的影响。结果表明,RL结构的C/C复合材料的摩擦性能较好,稳定性较高,是用作飞机刹车材料的前提;采用CVD+RI制备且石墨化后的C/C复合材料具有优良的摩擦磨损特性;CVD试样的密度较低时,摩擦系数较高,但磨损较大,较难形成完整的摩擦膜。  相似文献   

5.
Ruiying Luo  Xiulan Huai  Haiying Ding 《Carbon》2003,41(14):2693-2701
The effect of high temperature heat treatment on the tribological behavior of carbon/carbon (C/C) composites has been investigated. C/C composite preforms were made from 1K PAN plain carbon cloth, and densified using rapid directional diffusion (RDD) CVI processes. Four specimens treated at 1800, 1800+2000, 2000, and 2300 °C, respectively, were prepared. A ring-on-ring specimen configuration was used to simulate aircraft brakes. The brake initial angular velocity ranged from 1800 to 7500 rpm (6.2-26.0 m s−1 average linear sliding velocity). The specific pressure and moment of inertia were 392-784 kPa and 0.25-0.31 kg m2, respectively (1.9-42.3 MJ m−2 kinetic energy loading per unit friction surface area). The results showed that the stability of the brake moment-time curves increased with increasing heat treatment temperature (HTT) for the four composites, and those treated at 2300 °C possessed the lowest initial brake moment peak ratio values (from 1.1 to 1.3). The high degree of graphitization and low shear forces of the matrix carbon resulting from the high HTT could allow friction films to develop and reduce those values under the present brake conditions. The friction coefficients of four RDD CVI C/C composites decreased with an increase in specific pressure. The resulting changes in the friction coefficient of the four composites due to the specific pressure changes have basically nothing to do with the interface temperature under those conditions. According to the practical brake conditions, the friction properties of RDD CVD C/C composites could be improved by regulating the structure of the brake discs, changing the specific pressure exerted on the discs and the heat treatment. The linear wear rates of the four materials increased with increasing HTT. The composites treated at 2000 °C had both high enough friction coefficients and the lower linear wear rates. The different heat treatment methods at 2000 °C had no obvious effect on the friction and wear properties of RDD CVI C/C composites.  相似文献   

6.
C/C复合材料飞机刹车盘湿态刹车性能研究   总被引:1,自引:0,他引:1  
通过对比分析英国Dunlop公司及采用不同工艺方法制备的C/C复合材料在微观结构、正常条件和湿态条件下摩擦磨损性能,得出如下结论:密度高、孔隙率小、微观结构合理的C/C复合材料飞机刹车盘在湿态条件下具有良好的刹车性能。  相似文献   

7.
An attempt has been undertaken to obtain a better understanding of the friction and wear mechanisms of C/C composites by microstructural analysis of the friction surface layer and wear debris using scanning electron microscopy and transmission electron microscopy. The friction and wear properties of C/C composites of rough laminar pyrocarbon with added resin-derived carbon have been investigated with a home-made laboratory-scale dynamometer to simulate airplane normal landing. The results have shown that a friction layer with a thickness of several micrometers was formed on the bulk material. It was characterized as consisting mainly of amorphous carbon, but with a few microsized particles as well. This friction layer protected the bulk materials from serious degradation. In addition to the friction layer, a friction film with a thickness of less than 200 nm was observed for the first time. It partly covered the top surface of the friction layer. Transmission electron microscopy analysis has demonstrated that the friction film was characterized by a laminar structure, the belts of which were revealed to consist of highly oriented graphene sheets. The constant friction coefficient was attributed to this lubricant film.  相似文献   

8.
Steven Seghi  James Lee 《Carbon》2005,43(10):2035-2043
This paper describes the fabrication of high density (ρ ∼ 1.75 g/cc) composites containing a hybrid (carbon and boron nitride), or complete boron nitride matrix. The composites were reinforced with either chopped or 3D needled carbon fibers. The boron nitride was introduced via liquid infiltration of a borazine oligomer that can exhibit liquid crystallinity. The processing scheme was developed for the chopped carbon fiber/boron nitride matrix composites (C/BN) and later applied to the 3D carbon fiber reinforced/boron nitride matrix composites (3D C/BN). The hybrid matrix composites were produced by infiltrating the borazine oligomer into a low density 3D needled C/C composite to yield 3D C/C-BN. In addition to achieving high densities, the processing scheme yielded d002 spacings of 3.35 Å, which afforded boron nitride with excellent hydrolytic stability. The friction and wear properties of the composites were explored over the entire energy spectrum for aircraft braking using an inertial brake dynamometer. The C/BN composites outperformed both the previously reported C/C-BN and chopped fiber reinforced C/C. The high density 3D C/BN performed as well as both the 3D C/C and the C/BN. The 3D C/C-BN provided outstanding wear resistance, incurring nearly zero wear across the entire testing spectrum. The coefficient of friction was relatively stable with respect to energy level, varying from 0.2 to 0.3.  相似文献   

9.
刹车速度对C/C-SiC复合材料摩擦磨损性能的影响   总被引:2,自引:0,他引:2  
对反应熔体渗透工艺制备的C/C-SiC复合材料,在MM-1000型摩擦磨损试验机上进行了模拟飞机制动刹车实验,重点研究了C/C-SiC复合材料在不同刹车速度下的摩擦磨损性能.研究表明:随着刹车速度的增加,C/C-SiC复合材料的摩擦系数先少许增加然后再减小,在10 m/s时达到最大值0.52.磨损率在低速时保持较低的数值,随着刹车速度的增加呈线性增加,但仍小于C/C复合材料的磨损率,表明C/C-SiC复合材料具有优良的耐磨损性能.当刹车速度超过20 m/s时,由于能载水平较高,摩擦表面出现犁沟现象并形成大量球状磨屑,摩擦系数急剧减小.  相似文献   

10.
Two series of C/C–SiC composites were fabricated via precursor infiltration pyrolysis (PIP) and chemical vapor infiltration (CVI) using porous C/C composites with different original densities as preforms, respectively. The tribological characteristics of C/C–SiC braking composites were investigated by means of MM-1000 type of friction testing machine. The friction and wear behaviors of the two series of composites were compared and the factors that influence the friction and wear properties of C/C–SiC composites were discussed. Results show that the friction and wear properties relate close-knit to the content of SiC and porosity. As the original preform density increasing, the content of SiC and porosity decrease, and then the friction coefficient increases obviously, the braking time and the wear rate both decrease. Preparation techniques play an important role in the tribological properties of C/C–SiC composites. Compared with PIP process, the samples from CVI have a little higher friction coefficient, shorter braking time and higher wear rate.  相似文献   

11.
The tribological behavior of ultra-high temperature ceramic matrix composites (UHTCMCs) was investigated to understand these materials in friction applications. Samples consisting of pitch-based randomly orientated chopped carbon fiber (CF) reinforced ZrB2-10 vol% SiC were prepared (ZS). The tribological behavior was tested on a self-designed dynamometer, coupling the UHTCMC pads with either carbon fiber reinforced carbon−silicon carbide (C/C-SiC) or steel disks, with two applied contact pressures (1 and 3 MPa) and the surface microstructures were analyzed to unravel the wear mechanisms. Even at high mechanical stresses, tests against the C/C-SiC disk showed stable braking performance and wear. The abraded material from a steel disk formed a stable friction film by fusing together harder pad particles with abraded steel, which reduced wear and stabilized the braking performance. The high values of coefficient of friction obtained (0.5–0.7), their stability during the braking and the acceptable wear rate make these materials appealing for automotive brake applications.  相似文献   

12.
《Ceramics International》2019,45(13):16545-16553
To achieve the high-value reutilization of recycled carbon fiber (rCF), a new strategy of preparing rCF-based C/C-SiC brake pads is proposed in this work. The results show that the rCF possesses crystal structure and tensile strength comparable with those of virgin CF (vCF) exception of pyrolytic char adhering to the surface of rCF after pyrolysis. The rCF was converted into C/C composites through impregnation-pyrolysis. Pyrolytic char was found to have no evident negative effect on the densification rates of the rCF C/C composites. By reactive melt infiltration, the rCF C/C-SiC composites were fabricated based upon the rCF C/C composites. The achieved rCF C/C-SiC composites do not differ markedly from the vCF group control in terms of microstructure and bending strength. Furthermore, the thermal diffusion coefficients of the rCF C/C-SiC composites are very close to those of vCF C/C-SiC composites in the temperature range 25°C-300 °C. The coefficient of friction values of the rCF C/C-SiC composites are as stable as those of vCF control group, both being maintained at approximately 0.4 during friction test, whether at 25 °C or 300 °C. The wear rate of the rCF C/C-SiC composites is 3.8 μm·min−1, nearly indistinguishable from that of the vCF C/C-SiC composites, i.e., 4.5 μm·min−1, further suggesting that the two materials resemble each other closely. The rCF C/C-SiC composites exhibit great potential for use as alternative brake pads to serve auto braking systems. This work opens up a new path for high-value reuse of rCF.  相似文献   

13.
液相气化快速致密化工艺研究   总被引:6,自引:2,他引:4  
对一种新型快速炭/炭复合材料制备工艺--液相气化快速致密化工艺进行了初步探索。研究表明,采用该工艺,致密化效率可以得到快速提高,数小时内制得密度达1.7g/cm^3以上的炭/炭复合材料,致密速率 达到37g/h。偏光显微镜观察表明,试样中热解炭具有较高的光学活性;束内小孔隙热解炭,绝大多数为光学各向异性组织,但具体归属粗糙组织(RL)还是光滑组织(SL),很难定论;束间大孔隙内的热解炭具有明显的锥状生长结构,是较典型的RL组织;在偏光显微镜下没有观察到试样中有炭黑出现。  相似文献   

14.
为解决炭刹车盘在飞机中止起飞(RTO)时摩擦系数低的弱点,采用了针刺炭纤维无纬布准三向预制体,以狭缝定向流外热内冷、内热外冷热梯度CVI与树脂浸渍-炭化相结合的致密工艺,生产了双元炭基体的波音757-200型飞机炭刹车盘材料.与原装机的国外炭刹车盘在惯性台上进行了RTO动态力矩对比试验,结果表明:具有粗糙层结构热解炭与树脂炭优化组合的双元炭基体超码炭刹车盘,比国外单一粗糙层结构热解炭基体的炭刹车盘RTO时的摩擦系数提高了22.7%~29.2%,突破了炭刹车盘在飞机RTO动态力矩试验中摩擦系数严重衰减这个长期难于攻克的关键技术.  相似文献   

15.
分析了采用限域变温强制流动CVI工艺制备C/C复合材料的组织及力学性能的特点,结合C/C复合材料的组织形成规律和组织对性能的影响规律,详细研究了在同一工艺条件下所获得的具有不同组织和不同力学性能的C/C复合材料的力学性能及组织分布规律,并从微观组织结构的角度对力学性能的变化规律给予解释。  相似文献   

16.
Carbon fiber-reinforced silicon carbide matrix composites have the potential to overcome the shortcoming of the currently used carbon/carbon friction materials in aircraft brakes. In this article, the carbon/silicon carbide (C/SiC) composites were prepared by chemical vapor infiltration method, and the brake disks with different densities and component content were finally obtained. The friction coefficient and friction stability can be significantly improved by increasing both material density and carbon content. When the density of C/SiC composite is 2.3 g/cm3, the coefficient of friction measured is 0.23, the coefficient of friction stability remains about 0.43, the liner wear rate is less than 9.3 μm/cycle, and the weight wear rate is less than 9.1 μm/cycle. The rapid increase of friction coefficient approaching the end of braking is mainly related to the increasing of surface temperature in a short time and the enhanced adhesion and abrasion of contact conjunctions and asperities. The C/SiC composites exhibited a good stability of braking against fading versus the braking number and surface temperature. The surfaces of C/SiC brake disks were covered with wear debris including the fragment of carbon fibers after the braking tests. The wear on the surfaces is significantly determined by cyclic mechanical and thermal stresses, which result in the micro-cracks in the SiC matrix, the thin flakes of the surface materials as well as the grooves.  相似文献   

17.
Carbon fiber-reinforced silicon carbide matrix composites (C/C-SiC) have received considerable attentions because of their superior friction and wear behaviors. In this paper, C/C-SiC composites were fabricated by the reaction melt infiltration method, and the braking performance, the microstructure of friction surface, and wear debris at different braking speeds were also investigated. The mean coefficient of friction increases to the maximum value of 0.52 at 10 m/s and then declines afterwards with an increase in the braking speed. The higher coefficient of friction at low braking speed indicates the excellent braking performance of the C/C-SiC composites for low braking energy. Excellent wear resistance is demonstrated by the low wear rate of the C/C-SiC composites in comparison with C/C composites.  相似文献   

18.
In this work, we adopted PIP technology to introduce SiC ceramics into the carbon fiber bundles of C/C–SiC composites. The obtained C/C–SiC composites containing PIP-SiC exhibited improved flexural strength. Meanwhile, the strength difference was reduced in in-plane and vertical directions. Fracture morphology revealed that the introduction of SiC into the fiber bundles broadened available toughening mechanism of the prepared composites. The braking performance of the materials was tested on an MM-1000 dynamometer. After braking at different speeds, we analyzed wear rates, variations in friction coefficient, and the morphological evolution of the friction surface. The results indicated that the introduction of SiC into the fiber bundles enhanced the abrasive resistance of local C/C regions, which yielded a significant reduction of the wear rates.  相似文献   

19.
W.X Chen  L.Y Wang  Z.D Xu 《Carbon》2003,41(2):215-222
Ni-P-carbon nanotube (CNT) composite coating and carbon nanotube/copper matrix composites were prepared by electroless plating and powder metallurgy techniques, respectively. The effects of CNTs on the tribological properties of these composites were evaluated. The results demonstrated that the Ni-P-CNT electroless composite coating exhibited higher wear resistance and lower friction coefficient than Ni-P-SiC and Ni-P-graphite composite coatings. After annealing at 673 K for 2 h, the wear resistance of the Ni-P-CNT composite coating was improved. Carbon nanotube/copper matrix composites revealed a lower wear rate and friction coefficient compared with pure copper, and their wear rates and friction coefficients showed a decreasing trend with increasing volume fraction of CNTs within the range from 0 to 12 vol.% due to the effects of the reinforcement and reduced friction of CNTs. The favorable effects of CNTs on the tribological properties are attributed to improved mechanical properties and unique topological structure of the hollow nanotubes.  相似文献   

20.
The friction and wear behavior of polyimide (PI) composites reinforced with carbon nanotube (CNT) and polytetrafluoroethylene (PTFE) were comparatively evaluated under dry sliding, water‐, oil‐ or alkali‐lubricated condition. The wear mechanisms of the composites were also discussed. Results indicate that, when comparison with the dry friction situation, PI‐based composites results lower friction coefficients and wear rates under oil‐ or alkali‐lubricated condition. The lowest wear rate of the CNT/PTFE/PI composite is recorded as 1.2 × 10−6 mm3/Nm during the composite sliding in alkali, which is only about 40% of the value sliding under dry friction condition. The worn surface of neat PI under dry sliding is characterized by severe adhesive wear, whereas abrasive wear is the main character for CNT/PTFE/PI composites. The worn surfaces of CNT/PTFE/PI composites sliding in oil or alkali lubricated condition are smoother than those under dry or water condition. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号