首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 469 毫秒
1.
采用脉冲电源,在铜表面制备了复合镀层,研究了占空比、镀液中ZrO2纳米微粒添加量和脉冲频率对复合镀层的硬度、沉积速率和耐蚀性的影响。结果表明,随脉冲占空比的增加,镀层硬度、沉积速率和耐蚀性能均呈现先增大后减小的趋势;ZrO2纳米微粒的增加使镀层硬度增加,而沉积速率和耐蚀性能为先增大后减小;随脉冲频率的增加,镀层硬度、沉积速率及耐蚀性能均增加。最佳工艺参数应控制占空比为50%、ZrO2纳米微粒质量浓度9g/L、脉冲频率2000Hz。  相似文献   

2.
镍基氧化铝纳米微粒复合电镀的研究现状   总被引:1,自引:0,他引:1  
以Al2O3纳米微粒为复合材料的复合电镀是一种取代镀硬铬的极有价值的复合表面技术。Al2O3微粒与镍金属共沉积可明显提高镀层的硬度、耐磨性与耐蚀性。主要阐述了Al2O3纳米微粒与金属镍共沉积的工艺条件对沉积速率和镀层性能的影响。并且指出Al2O3纳米微粒复合镀镍中关键问题是如何提高复合镀层中纳米微粒的含量及镀层形貌对镀层性能的影响,以寻找控制镀层表面形貌的条件。  相似文献   

3.
Ni-ZrO2纳米复合电铸层耐蚀性的研究   总被引:5,自引:0,他引:5  
用静态浸泡实验法研究了镍镀层和Ni-ZrO2纳米复合电铸层在质量分数分别为10% HCl溶液和10% H2SO4溶液中的耐蚀性.用SEM观察了各种样品腐蚀后的表面形貌,分析了纳米ZrO2微粒复合量对复合电铸层耐蚀性的影响,同时对纳米复合电铸层的腐蚀机理进行了初步探讨.结果表明,脉冲纳米复合电铸层的耐蚀性明显优于相同条件下制备的镍镀层,镀液中纳米ZrO2悬浮量对提高纳米复合电铸层耐蚀性有一定程度的影响.  相似文献   

4.
(Ni-P)-WC纳米微粒复合电镀的研究   总被引:9,自引:2,他引:7  
研究了WC纳米微粒质量浓度、阴极电流密度、pH值、温度、搅拌方式等工艺参数对(Ni-P)-WC纳米微粒复合镀层沉积速度的影响,并通过正交试验,确定了复合电镀的最佳工艺参数。对镀层的表面形貌、成分及不同热处理条件下的硬度进行了观察与测定,实验结果表明,镀层表面均匀,有质量分数为2.0%~3.5%的WC纳米微粒的镀层;热处理后硬度可达1240HV。  相似文献   

5.
(Ni-Fe)-ZrO2复合镀层的制备及性能研究   总被引:1,自引:0,他引:1  
采用电沉积的方法在硫酸盐溶液中制备了(Ni-Fe)-ZrO2复合镀层。讨论了ZrO2微粒含量对复合镀层硬度的影响规律,对镀层物理化学性能进行了表征。结果表明:当ZrO2质量浓度为8 g/L时镀层的硬度最高,复合镀层的耐蚀性明显提高,表面形貌测试明显看出有ZrO2微粒沉积在镀层中。  相似文献   

6.
研究了电镀液中SiO2纳米微粒含量对碳纤维增强环氧树脂复合材料复合电镀层的影响.结果表明,硫酸铜电镀溶液中加入一定比例SiO2纳米微粒可使复合材料镀层维氏硬度提高,镀层晶粒得到明显细化,镀层致密度提高,随SiO2纳米微粒含量提高镀层导电性略有下降.  相似文献   

7.
为了提高结晶器铜板的使用寿命,采用电沉积的方法得到了Ni-SiC纳米复合镀层。采用单因素实验法对影响电镀层硬度的阴极电流密度、SiC纳米微粒添加量、pH及温度等进行了研究。结果表明,Ni基SiC纳米复合电镀工艺参数均对复合镀层的硬度有影响。对Ni-SiC纳米复合镀层的表面形貌进行了测试,确定最优工艺条件为8g/L SiC纳米微粒,Jκ为3A/dm2,pH为4.0,θ为30℃。纳米复合镀层的硬度与纯镍镀层相比有明显提高。  相似文献   

8.
在氨基磺酸盐电解质溶液中,采用超声波辅助电沉积的方法,于纯铜板表面制备了Ni-Co/ZrO_2复合镀层。研究了超声波功率对Ni-Co/ZrO_2复合镀层的表面形貌、相结构、显微硬度及耐蚀性的影响。结果表明:超声波功率直接影响复合镀层中纳米微粒的复合量,从而影响复合镀层的结构和性能。超声波功率为240 W时所得复合镀层的显微硬度最高,纳米微粒的复合量最大,耐蚀性最强。同时,超声波功率为240 W时引起的阴极极化最大,有利于纳米微粒与基质金属的共沉积。  相似文献   

9.
以铁片作为基材,采用电镀工艺制备Ni-ZrO2纳米复合镀层。研究了温度、pH值、时间及ZrO2的质量浓度对复合镀层性能的影响。通过实验得出最佳的工艺参数为:ZrO21.5g/L,pH值4~5,50℃,60min。采用扫描电子显微镜观察复合镀层的微观形貌,并通过XRD分析其相组织成分。结果表明:复合镀层表面光亮,微粒均匀、细小;其相组织成分主要为Ni,ZrO2和Ni-ZrO2。  相似文献   

10.
研究了电流密度对黑Cr-C纳米复合镀层组织及性能的影响.通过扫描电镜(SEM)观察复合镀层的表面形貌,并测定了镀层的显微硬度.结果表明,黑Cr-C纳米复合镀层显微硬度最高达10.5 GPa,镀层中微粒的体积分数最高达8.12%,电沉积复合电镀最佳电流密度为100 A/dm2.  相似文献   

11.
Ni-ZrO2复合镀层的腐蚀摩擦学性能研究   总被引:3,自引:0,他引:3  
用电镀方法制得Ni-ZrO2复合镀层,研究电镀Ni-ZrO2复合镀层的结构以及其硬度、耐磨性、抗腐蚀性与电镀电流密度的关系。结果表明:复合镀层的显微硬度比纯镍镀层硬度成倍提高,复合镀层耐磨性比镍镀层提高20%以上;抗腐蚀性提高70%以上。X射线衍射结果显示,复合镀层由Ni及非晶ZrO2组成。Ni相为面心立方晶体结构,晶格常数为0.353nm,小于纯镍镀层,晶粒尺寸为23.8nm,大于纯镍镀层。  相似文献   

12.
为了进一步提高Ni-W-P合金镀层的硬度和耐蚀性,用脉冲电沉积法制备了(Ni-W-P)-TiO2复合镀层,并研究了镀液中TiO2加入量对镀层硬度和表面形貌的影响,且通过极化曲线和电化学阻抗谱研究了镀层在3.5%NaCl溶液中的耐蚀性能。结果表明,(Ni-W-P)-TiO2复合镀层的性能优于Ni-W-P镀层,而当镀液中TiO2质量浓度为6g/L时,复合镀层的硬度较高,表面形貌及耐蚀性能较优。自腐蚀电位较正,腐蚀电流密度较小,极化电阻较大,其交流阻抗谱对应的电阻值也较大。  相似文献   

13.
以钢板为基体,在普通氯化物镀锌液中加入碳化硅制得Zn-SiC 复合镀层。研究了电流密度、温度以及 SiC、氯化铵的质量浓度对镀层耐蚀性和显微硬度的影响,得到制备 Zn-SiC 复合镀层的较佳工艺条件:电流密度 0.5~1.0 A/dm2,温度 20~25℃,SiC 10~11 g/L,氯化铵 250~260 g/L。在较佳工艺下,Zn-SiC 复合镀层中 SiC 的质量分数为 0.75%,耐蚀性优于纯锌镀层,镀层中 SiC 的存在有利于生成晶粒细小、致密且显微硬度较高的镀层。  相似文献   

14.
采用脉冲电沉积法在304不锈钢基体上制备出Ni-WC纳米复合镀层,并研究了脉冲电流密度对Ni-WC纳米复合镀层耐蚀性及硬度的影响。结果表明:随着脉冲电流密度的增大,Ni-WC纳米复合镀层的织构呈现规律性变化,晶粒尺寸先减小后增大,硬度先增大后减小。当脉冲电流密度为10A/dm2时,Ni-WC纳米复合镀层的耐蚀性最好,硬度最高。  相似文献   

15.
为了改进钢材表面性能,采用复合化学镀技术制备( Ni-P) -Al2O3纳米微粒复合镀层,由于纳米微粒独特的物理化学特性致使使得到的复合镀层具有多种优良性能.通过Ni-P合金镀层、(Ni-P) -Al2O3纳米微粒复合镀层和热处理后的(Ni-P) -Al2O3纳米微粒复合镀层硬度和耐磨性能测试,得出(Ni-P)-Al2...  相似文献   

16.
采用电镀的方法制备出Ni-WC纳米复合镀层,镀液组成为:NiSO4·7H2O 250 g/L,NiCl2·6H2O 30 g/L,H3BO3 30 g/L,光亮剂0.1 g/L,纳米WC颗粒5~ 30 g/L,表面活性剂及分散剂适量.研究了温度、电流密度及pH对复合镀层外观的影响,得到最佳电镀工艺条件为:温度50~55...  相似文献   

17.
纳米二氧化锆在复合镀中的应用   总被引:1,自引:0,他引:1  
介绍了纳米二氧化锆粉末在制备复合镀层上的应用及纳米粉改善镀层性能机理,包括制备、高温抗氧化和耐蚀性、高硬度耐磨性以及具有电化学活性等功能的复合镀层的最新进展,并对纳米颗粒在改善镀层耐蚀性和增强镀层硬度等方面的机理作了介绍。最后指出,中国是锆资源大国,纳米二氧化锆粉末的制备工艺研究已经非常成熟,但其在复合领域的应用开发还局限于实验室阶段,相信不久的将来纳米二氧化锆在复合镀层中的应用具有很好的发展前景。  相似文献   

18.
Ni-SiO2纳米微粒复合镀层的电沉积及其耐蚀性研究   总被引:3,自引:1,他引:2  
卜路霞  石军  朱华玲  尉震 《电镀与精饰》2011,33(6):13-15,19
采用控电流电沉积技术以铜为基体制备了Ni-SiO2纳米微粒复合镀层.通过改变镀液中SiO2纳米微粒的质量浓度,考察了其对镀层中SiO2微粒的质量分数、电沉积速率及镀层耐蚀性能的影响,对纯镍镀层与Ni-SiO2纳米微粒复合镀层的耐蚀性进行了比较.研究了阴极电流密度对复合镀层耐蚀性能的影响,并采用扫描电子显微镜对镀层形貌进...  相似文献   

19.
工艺条件对电沉积RE-Ni-W-P-SiC-PTFE复合镀层性能的影响   总被引:5,自引:1,他引:5  
研究了电流密度,镀液温度、pH值和PTFE等对电沉积RE-Ni-W-P-SiC-PTFE复合镀层性能的影响。结果表明,镀态下镀层的硬度在420-550Hv之间,当镀液中PTFE浓度为25ml/L时,磨损量最小,但镀层的耐蚀性却最差;而当镀液中PTFE浓度为30ml/L时,则具有良好的综合性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号