首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
可视化实验研究了透明螺旋折流板换热器的壳程速度分布特征,重点研究了轴向速度的分布规律及对应的机理。结果表明,轴向速度按照折流板的螺旋周期呈周期性变化,不同流量下同一测点的轴向速度分布规律相似。轴向速度在换热器壳程周边区域分布比较均匀,沿轴向变化幅度较小,流动相对稳定,湍流度较低。由于受三角区漏流的影响,管束中心区域轴向流速急剧增大,沿轴向变化幅度较大,稳定性差,湍流强度较高。中心区域轴向速度平均值明显高于外围区域,离换热器中心越近,轴向速度越大。随着壳程流量的增大,中心区域轴向速度的增幅高于外围区域。管束中心处轴向速度波动剧烈,壳程流量较小时,中心处轴向流速平均值最大,随着流量的增加,湍流度增大,流体返混现象明显,中心处轴向流速平均值逐渐减小。  相似文献   

2.
连续螺旋折流板换热器流动与传热性能及熵产分析   总被引:1,自引:1,他引:0       下载免费PDF全文
曹兴  杜文静  程林 《化工学报》2012,63(8):2375-2382
采用数值模拟的方法,研究了螺旋角对连续螺旋折流板换热器流动与传热性能的影响,并以熵产数为指标对换热器性能进行了基于热力学第二定律的分析评价。结果表明,相同质量流量时壳程传热系数和压降均随螺旋角的增大而降低,且后者降低的幅度大于前者。连续螺旋折流板换热器壳程横截面上切向速度分布较弓形折流板换热器更加均匀。在靠近中心假管的内层区域,同一径向位置的轴向速度随螺旋角的增大而降低,而在靠近壳体壁面的外层区域则相反。螺旋角越大,不同径向位置的换热管间的换热量分布均匀性越好。壳程质量流量相等时,换热器中传热引起的熵产占总熵产的比重随着螺旋角的增大而增加,熵产数随着螺旋角的增大而降低。  相似文献   

3.
搭接方式对螺旋折流板换热器壳程性能的影响   总被引:3,自引:2,他引:1       下载免费PDF全文
曹兴  杜文静  汲水  程林 《化工学报》2011,62(12):3367-3372
对螺旋折流板换热器进行了数值模拟,研究了相同螺距下搭接方式对壳程流动与传热性能的影响。结果表明,壳程传热系数与压降均随搭接量的增大而减小,且后者降低的幅度大于前者;连续搭接时三角区漏流增大了中心区域横向和纵向冲刷管束的速度,但整体分布不均匀,折流板背风侧流动较差;随搭接量的增大,边缘三角区增强了靠近壳体壁面区域的流动,改善了壳程的流场状况;折流板交错搭接时中心区域换热管热通量较连续搭接大幅降低,传热沿径向分布的不均匀性大大减轻。  相似文献   

4.
螺旋折流板换热器在石油化工行业中的应用   总被引:1,自引:0,他引:1  
通过实验对比分析弓形折流板和螺旋折流板换热器的壳程传热与流动特性,得出单位压降条件下螺旋折流板换热器壳程对流传热系数均高于弓形折流板换热器;当壳程流量相同时螺旋折流板换热器壳程压降远低于弓形折流板换热器,随着流量的增加二者相差越大.结果表明螺旋折流板具有单位压降条件传热系教高,流动阻力小,能有效防止管束振动和适用范围广的优点,在石油化工领域是冷换设备较为理想的选择.  相似文献   

5.
王斯民  肖娟  王家瑞  简冠平  文键 《化工学报》2017,68(12):4537-4544
针对现有平面螺旋折流板换热器的相邻折流板与壳体间存在的三角漏流区,提出了一种折面螺旋折流板换热器。基于实验研究分析了折面螺旋折流板换热器的螺旋角和搭接度对流动传热性能的影响,并拟合了壳程对流传热和阻力系数的实验关联式。结果表明,当壳程体积流量相同时,随着螺旋角的减小,折面螺旋折流板换热器的壳程总压降增加,壳程管束压降增加,壳程膜传热系数提升,综合性能增强;相同壳程体积流量下,随着搭接度的增加,壳程总压降也增加,壳程膜传热系数增加,综合性能提高。实验研究表明螺旋角18°、搭接度50%的折面螺旋折流板换热器流动传热性能最佳。将折面螺旋折流板换热器的螺旋角和搭接度作为修正因子拟合到了实验关联式中,对比发现实验值与Nu实验关联式计算值的平均相对误差为1.13%,与f实验关联式的平均相对误差为6.84%,说明了拟合的正确性和可靠性。研究结果为折面螺旋折流板换热器的设计提供了理论指导。  相似文献   

6.
针对现有平面螺旋折流板换热器的相邻折流板与壳体间存在的三角漏流区,提出了一种折面螺旋折流板换热器。基于实验研究分析了折面螺旋折流板换热器的螺旋角和搭接度对流动传热性能的影响,并拟合了壳程对流传热和阻力系数的实验关联式。结果表明,当壳程体积流量相同时,随着螺旋角的减小,折面螺旋折流板换热器的壳程总压降增加,壳程管束压降增加,壳程膜传热系数提升,综合性能增强;相同壳程体积流量下,随着搭接度的增加,壳程总压降也增加,壳程膜传热系数增加,综合性能提高。实验研究表明螺旋角18°、搭接度50%的折面螺旋折流板换热器流动传热性能最佳。将折面螺旋折流板换热器的螺旋角和搭接度作为修正因子拟合到了实验关联式中,对比发现实验值与Nu实验关联式计算值的平均相对误差为1.13%,与f实验关联式的平均相对误差为6.84%,说明了拟合的正确性和可靠性。研究结果为折面螺旋折流板换热器的设计提供了理论指导。  相似文献   

7.
基于采用周期性全截面计算模型得到的帘式折流片换热器和折流板换热器壳程流体流动和传热数值计算结果,应用场协同原理对二者传热性能进行了分析。分析了帘式折流片换热器在壳程不同位置处的速度和湍流度,以及场协同角和对流传热系数,并与折流板换热器相同位置处的情况进行了对比。由于折流板壳程流体为横向流动,而帘式折流片壳程总体上是纵向流动,故折流板换热器的平均流速和湍动度稍高于帘式折流片换热器,平均流速为帘式折流片换热器的1.15倍,其湍动程度为帘式折流片换热器的1.4倍;折流板换热器2条验证线上的场协同角的平均值均小于帘式折流片换热器。研究结果为管壳式换热器结构改进和性能提升提供了参考依据,同时帘式折流片换热器的这种结构特点对于节能降耗的研究也具有重要意义。  相似文献   

8.
螺旋折流板菱形翅片管换热器的传热与流阻性能   总被引:23,自引:6,他引:17  
引 言近年来的研究[1~ 6] 表明 ,螺旋折流板换热器的螺旋折流板使流体在壳侧呈连续柱塞状螺旋流动(即 plug流 ) ,不会出现传统折流板换热器内的流动“死区” ,并且由于旋流产生的涡与管束传热界面边界层相互作用 ,使湍流度大幅度增强 ,有利于提高壳侧传热膜系数 .PStehlik等[2 ] 对螺旋折流板换热器进行研究得出 ,相同条件下与传统弓形折流板换热器相比 ,换热器的传热系数提高 1 8倍 ,流动阻力降低 2 5 % .陈世醒等[6] 研究发现 ,对于水这样的低黏度流体 ,相同流量单位压降的壳程对流传热系数 ,螺旋折流板换热器约为普通弓形折流板换热器…  相似文献   

9.
螺旋折流板换热器数值模拟及入口结构改进研究   总被引:8,自引:0,他引:8  
利用FLUENT软件,采用雷诺应力湍流模型模拟了不同流量下常规螺旋折流板换热器壳程的流动与传热性能,并用实验验证了模拟的可靠性。为了减少换热器壳侧入口处压降,对螺旋折流板换热器壳侧入口结构进行改进,将流体垂直流入壳体改为入口与壳体形成一定角度。对结构改进后的螺旋折流板换热器进行的数值模拟表明,采用倾斜入口结构时进口处压力降比采用垂直入口结构时低52%以上,且流量越大,这种降低幅度越明显。  相似文献   

10.
改进了螺旋折流板换热器的结构,在常规结构的壳侧增加环形挡板。采用雷诺应力湍流模型,运用Fluent软件对螺旋折流板倾角为35°及其改进后的螺旋折流板换热器的流动与传热性能进行了数值模拟。模拟结果验证了RSM模型的可靠性,同时得出在低流量时,改进后的换热效果不如常规结构时的换热效果;而在壳程流体高流速的情况下,改进后换热器的压力降虽然增大,但总传热系数K和单位压降下的总传热系数K/Δp均得到提高,且流量越大,这种提高幅度越明显。  相似文献   

11.
宋素芳 《广东化工》2012,39(8):13-14,4
建立了连续螺旋折流板换热器三维模型并划分网格,采用分离式求解器、SIMPLE压力速度耦合方式与Realizable k-ε湍流模型,利用FLUENT软件对连续螺旋折流板换热器壳程流体流动与传热进行了模拟计算,得到壳程流体速度、压力与温度分布图,并与传统弓形折流板换热器作比较。螺旋折流板节距与弓形折流板间距相等时,螺旋折流板换热器壳程传热系数增加了25%左右,而压力降减小了18%左右。通过对不同螺旋角度的螺旋折流板换热器进行模拟分析,发现随螺旋角增大壳程传热系数和压力降都呈减小趋势,且壳程流体进口平均速度越大,作用越明显,故在实际工程中,盲目追求高的传热系数或低的压降都是不可取的。本数值模拟可为螺旋折流板换热器进一步的工程研究提供可靠的理论参考依据。  相似文献   

12.
文章对冷却水在换热器管程流动并与壳程的热油逆流换热条件下,对螺旋隔板三维翅片管换热器的传热与压降性能进行了实验研究,并与光滑管进行了对比。在相同壳程Reynolds数下,三维翅片管的壳程Nusselt数是光滑管的2.2—2.9倍,而压降是光滑管的2.3倍左右。采用计算流体力学软件F luent 6.0对螺旋隔板三维翅片管和光滑管换热器进行了数值模拟。结果表明,螺旋流条件下光滑管表面速度矢量均匀、稳定,而三维翅片表面的速度矢量因翅片激发流体而产生湍动和不规则的二次流,从而强化了流体的对流传热。对于螺旋隔板三维翅片管换热器,壳程Nusselt数和压降的数值模拟结果与实验计算值吻合良好,最大偏差分别为6.3%和9.8%。  相似文献   

13.
肖兴  湛立智  张正国  高学农 《广东化工》2008,35(1):46-48,55
以水-润滑油换热为对象,对螺旋隔板套管换热器的壳程传热与压降性能进行了实验研究与数值模拟。通过威尔逊图解法获得了管程的传热系数,并计算出了壳程的努塞尔特准数。采用Fluent软件模拟了润滑油在螺旋隔板套管换热器壳程层流流动时的流场、温度场以及传热与压降性能。结果表明,流体在螺旋隔板换热器的壳程流动均匀,在隔板附近没有返混和流动死区,但温度梯度最大。在相同雷诺常数下,壳程的努塞尔特准数和压降模拟值分别比实验值高1.3%~8%和4%~38.1%,模拟值与实验值吻合较好。  相似文献   

14.
杜文静  王红福  曹兴  程林 《化工学报》2013,64(9):3123-3129
针对现有四分螺旋折流板换热器中心区域漏流明显的特征,提出了一种新型的六分扇形螺旋折流板换热器。建立了六分扇形螺旋折流板换热器的三维物理模型,应用Ansys CFX软件对其壳程流动与传热特性进行数值模拟,分析了不同螺旋角(10°、20°、30°、40°)和不同工况下六分扇形螺旋折流板换热器的壳侧性能,并与传统的弓形折流板换热器作对比。结果表明,六分扇形螺旋折流板可以显著减少三角区漏流现象的发生,壳程流体旋流特性较好。随着螺旋角的增大,壳侧速度场与温度场分布更加均匀,综合换热性能逐步提高。  相似文献   

15.
三维翅片管外螺旋流动传热强化   总被引:6,自引:0,他引:6       下载免费PDF全文
张正国  余昭胜  方晓明  高学农 《化工学报》2006,57(11):2531-2535
流体在螺旋隔板换热器的壳程类似于塞状流流动,几乎没有返混和流动死区.在相同压降下,其传热系数比普通的弓形隔板换热器高得多.以润滑油作为实验介质,研究了润滑油在螺旋隔板单管换热器的壳程传热和压降性能,并与光滑管进行了性能对比.采用Wilson图解法分别分离出了螺旋隔板花瓣管和光滑管单管换热器的管程传热系数,并计算出各自的壳程传热系数,壳程传热系数相对误差为±3%.实验结果表明,在相同Reynolds数下,螺旋隔板花瓣管单管换热器的Nusselt数和压降Δp分别是螺旋隔板光滑管单管换热器的2~2.7倍和1.3~1.4倍.与螺旋隔板光滑管单管换热器相比,螺旋隔板花瓣管单管换热器的传热性能的提高远高于压降的提高,证明在螺旋流条件下,花瓣管具有很好的传热强化性能.  相似文献   

16.
杜文静  王红福  袁晓豆  程林 《化工学报》2013,64(4):1145-1150
提出了一种新型的椭圆管连续螺旋折流板换热器。利用ANSYS CFX软件对壳侧流动与传热进行了数值模拟,并采用性能评价图及三场协同原理分析其壳侧性能。结果表明:在研究范围内,以椭圆管替代传统圆管管束后,在维持传热面积基本不变的前提下,壳侧压降降低72%~80%,综合换热性能提高32%~40%。应用性能评价图分析发现椭圆管在强化换热的同时也大大减小了压降。这是由于在相同的速度场与温度场协同前提下,椭圆管使速度场与压力场更好地协同,实现高效低阻强化传热的目的。  相似文献   

17.
邓先和  徐国想  陆恩锡 《化学工程》2003,31(1):30-34,39
对螺旋折流孔板管壳式换热器壳程的传热与流体阻力做了研究 ,给出换热器壳程传热与流阻的计算关联式 ,并采用实验模型对换热器壳程流体旋转流的阻力系数与传热管的局部传热系数做了测试 ,且对光滑和菱形翅片两种管型作了对比  相似文献   

18.
平行流分隔板管壳式换热器壳侧流场与传热性能   总被引:3,自引:0,他引:3  
引 言在石油、化工、能源、建筑、冶金、轻工、核能、制冷、动力乃至火箭、航天航空等工业领域[1] 大量使用各种换热器 ,所以研究开发高性能换热设备提高传热性能是节能增效的重要途径之一 .如图 1(a)所示的单弓形折流板管壳式换热器已经在工业中使用了上百年 ,而且迄今一直是  相似文献   

19.
段振亚  沈锋  张俊梅  宋晓敏  曹兴 《化工学报》2016,67(Z1):232-238
为了增加大螺旋角下单位长度换热管上螺旋折流板数量提高换热,提出三螺旋折流板导流结构,对设置三螺旋折流板后壳程流体的流动与传热进行了数值模拟,重点考察了Reynolds数Re=1391~4174时的壳程压降及对流传热系数,与设置单螺旋折流板的对比结果表明:三螺旋折流板换热器壳程对流传热系数高27.9%,JF因子高13.67%,综合传热性能更好。在此基础上运用耗散理论分析了三螺旋折流板采取不同螺旋角时对换热效率的影响,发现由传热引起的耗散率随Reynolds数变化规律与壳程对流传热系数随Reynolds数的变化规律类似,相同流量条件下螺旋角为64.8°的换热器耗散率最小。另外,中心换热管与壳壁附近换热管的传热系数比较结果显示,中心管热交换量均低于壳壁附近换热管热交换量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号