首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
本文根据铁碳微电解过程可以产生芬顿反应所需的Fe~(2+)的性质,选取铁碳微电解+芬顿氧化组合工艺对某制药厂生产车间的废水进行预处理,并通过正交实验探讨了各工艺的最佳运行条件。结果表明:固液比为0.6运行1h为铁碳工艺的最佳条件,在此条件下其原水的TOC与COD的去除率分别为:59.8%和51.6%;面对铁碳法后的出水,芬顿氧化法的最佳运行条件为pH=3.5,H_2O_2加入量为0.8ml/50ml,运行时间为100min;经过铁碳微电解+芬顿氧化组合工艺预处理后,TOC与COD的去除率高达79.1%和79.0%。  相似文献   

2.
陈浩  杨斌  乔琪 《净水技术》2023,(S1):194-199
以CODCr、TN为评价指标,探究不同高级氧化工艺预处理乙腈废水的最佳条件,并对比各工艺的处理效果和优缺点,为工程实践提供指导。结果表明,铁碳微电解的最佳条件是pH值为4、铁碳填料投加量为1 500 g/L,2 h内CODCr、TN去除率约为31.87%、38.84%;芬顿氧化的最佳条件是pH值为5、H2O2投加量为20 mL/L、Fe2+/H2O2摩尔比为1:5,2 h内CODCr、TN去除率约为58.97%、62.62%;铁碳微电解-芬顿耦合工艺的CODCr、TN去除率可达60.70%、66.52%;pH值为7条件下,臭氧氧化2 h内CODCr、TN去除率约为63.80%、61.97%,连续反应24 h后可达约96.70%、94.12%。考虑成本和能耗,采用单独芬顿工艺或短时间的臭氧氧化工艺处理乙腈废水的性价比较高。  相似文献   

3.
针对铁碳微电解反应中填料易板结及处理效率低等问题,通过增加内循环装置改进反应器结构,同时将铁碳微电解与H2O2进行工艺耦合,用于处理多晶硅有机废水,考察了Fe-C投加量、初始pH值、H2O2投加量、反应时间等工艺条件对COD去除率的影响,并通过响应面法优化了工艺条件。结果表明,各工艺条件对多晶硅有机废水COD去除效果的影响大小为:铁碳投加量>反应时间>H2O2投加量>初始pH值,其最适宜工艺条件为:铁碳投加量250 g·L-1,初始pH值2.8,H2O2投加量112 mL·L-1,反应时间83 min,该反应条件下COD的去除率为71.26%。铁碳/H2O2降解多晶硅有机废水COD的动力学回归方程为Y=0.5273X-0.6347,降解COD的速率常数为0.527 3 min-1。  相似文献   

4.
高浓度有机化工废水,含有多种复杂有机物,毒性高,难以直接生化。为了提高废水的生化性及处理效果,新型膜曝气膜生物反应器(MABR)耦合高级氧化技术对废水进行了实验研究。以铁-碳微电解、芬顿反应作为预处理,膜曝气膜生物反应器为生化系统,臭氧化技术作为深度处理,探究了操作条件对出水COD浓度、BOD5/COD(B/C)的影响。研究结果表明:在铁碳反应时间为1.5 h,pH值为4时,B/C比可从0.05提高到0.12;而芬顿反应的最适宜n(H2O2)∶n(Fe2+)和pH值分别为9和3。经预处理的废水在MABR和深度处理臭氧化的共同作用下,出水COD<500 mg/L,达到了进入污水处理厂的要求。  相似文献   

5.
为了提高铁碳微电解工艺处理实际印染废水的效率,采用响应面法进行工艺条件优化。以COD去除率为响应值,初始pH、铁投加量、铁碳质量比及反应时间为实验因素,构建响应面模型,分析模型的显著性。结果表明:当初始pH为3.53、铁投加量为83.92g/L、铁碳质量比为0.82及反应时间为78.48min时,COD去除率的预测值为75.25%,与实测值相差0.23%(<2%),可以利用该模型预测COD去除率的变化。同时采用大肠杆菌对铁碳微电解工艺进出水的生物毒性进行检测,与进水组相比,出水组中乳酸脱氢酶(LDH)释放量由对照组的2.13倍下降至对照组的1.64倍,同时活性氧物质(ROS)产生水平由对照组的19.26倍下降至对照组的4.81倍,细胞死亡率由98.1%下降至61.5%,对数期由5h延长至9h,且BOD5/COD从0.151升至0.416,因此铁碳微电解工艺具有降低印染废水生物毒性的作用。  相似文献   

6.
采用混凝沉淀、铁碳微电解、芬顿氧化3种方法对高浓度制药废水进行降解实验研究,考察了单独方法和组合方法的实际降解效果,并寻找最佳处理效果的组合工艺。结果表明:高浓度抗生素废水,具降难解性,使用单一的物化处理法,去除效果均不佳,最大去除率为21.4%;采用两种组合处理工艺时,去除率最高提高13.9%;铁碳微电解反应结束后调节pH,COD的去除率更高。当原水COD为55 600 mg/L,经过混凝沉淀-铁碳微电解(调pH)-芬顿反应后,COD的去除率接近60%,该组合工艺具有去除率高,反应时间短的特点。  相似文献   

7.
乔智威  杨仁党  王海辉  周健 《化工学报》2014,65(5):1729-1735
采用巨正则Monte Carlo法(GCMC),对CH4 /CO2混合气体体系基于金属-有机骨架材料(MOFs)的吸附分离进行了模拟研究。吸附分离材料涉及3个系列(M-MOF-74、M-MIL-53和[M(atz)(bdc)0.5])(M=Mg,Co,Ni,Zn,Al,Cr)不同金属配位的8种MOF材料。研究表明,Mg-MOF-74的CO2吸附性能在高压下优于其他材料;在低压时,拥有大量氨基官能团的[Zn(atz)(bdc)0.5]和[Co(atz)(bdc)0.5]材料有更高效的CO2分离性能。通过径向分布函数和CO2吸附构型快照重叠图进一步分析发现,各个系列材料不同金属配位对CO2吸附构型的影响造成了材料吸附分离性能有较大的不同。研究结果能够为实验上设计和开发新型高效CO2和CH4吸附分离MOFs材料提供启发。  相似文献   

8.
采用铁碳微电解和水解酸化组合工艺对高浓度水性涂料废水进行预处理。研究了铁碳微电解的停留时间和p H对COD去除率的影响,随着停留时间的增大,铁碳微电解对COD的去除率先逐渐增大,后变缓;随着水性涂料废水p H的降低,铁碳微电解对COD去除率逐渐增大;当停留时间为3 h,p H为3时,铁碳微电解对涂料废水的去除率达到75%。采用铁碳微电解-水解酸化进行连续性预处理试验,涂料废水的进水COD为12000 mg/L,出水的COD为1950 mg/L,组合工艺对COD的去除率达到83. 8%。  相似文献   

9.
采用铁碳微电解/H_2O_2联合吹脱预处理煤化工废水,铁碳微电解/H_2O_2可有效去除COD,进一步吹脱有效分离废水中的氨氮。铁碳微电解/H_2O_2类Fenton分别进行了单因素实验和正交实验,采用控制变量法,依次进行了不同铁碳体积比、H_2O_2投加量、溶液pH及反应时间四组单因素实验。进一步通过正交实验确定在固液比为1∶5的条件下,Fe/C(体积比)为1∶2,溶液pH为5,反应时间为3 h,H_2O_2(30%)投加量为1 ml/L为最佳反应条件,此时COD去除效率可达75%;废水经过铁碳微电解/H_2O_2处理后,再进行吹脱除氮实验,实验考察了不同温度,pH以及曝气时间对氨氮去除率的影响。  相似文献   

10.
通过向铁碳微电解材料中添加催化物质制备出新型铁碳微电解材料,然后利用该新型微电解材料对对芳香聚酰胺膜生产加工废水进行降解试验。结果显示同等试验条件下与未添加催化物质的铁碳微电解材料对比废水中COD的平均降解效率可以提高8%~10%左右。在利用该新型铁碳微电解材料对芳香聚酰胺膜加工废水进行降解时得到的处理条件为废水停留时间为2~3h,曝气强度为气液比5~8,臭氧的投加量为0.4~0.8 g/h。  相似文献   

11.
The synthesis of a novel 3D aluminophosphate is described. The thermal properties of the material were investigated, and the existence of three high-temperature variants was revealed. The crystal structures of the as-synthesized material (UiO-26-as) and the material existing around 250°C (UiO-26-250) were solved from powder X-ray diffraction data. UiO-26-as with the composition [Al4O(PO4)4(H2O)]2−[NH3(CH2)3NH3]2+ crystallizes in the monoclinic space group P21/c (no. 14) with a=19.1912(5), b=9.3470(2), c=9.6375(2) Å and β=92.709(2)°. It exhibits a 3D open framework consisting of connections by PO4 tetrahedra with AlO4 tetrahedra, AlO5 trigonal bipyramids and AlO5(H2O) octahedra forming two types of layers stacked along [1 0 0] and connected by Al–O–P bondings. The structure possesses a 1D 10-ring channel system running along [0 0 1], in which doubly protonated 1,3-diaminopropane molecules are located. UiO-26-250 with the composition [Al4O(PO4)4]2−[NH3(CH2)3NH3]2+ crystallizes in the monoclinic space group P21/c with a=19.2491(4), b=9.27497(20), c=9.70189(20) Å and β=93.7929(17)°. The transformation to UiO-26-250 involves removal of the water molecule which originally is coordinated to aluminum. The rest of the structure remains virtually unchanged. The crystal structures of the two other variants existing around 400 (UiO-26-400) and 600°C (UiO-26-600) remain unknown.  相似文献   

12.
新型除磷填料的制备及除磷吸附床运行参数的优化   总被引:1,自引:0,他引:1       下载免费PDF全文
为解决现有除磷吸附剂粒径小造成的材料易流失和系统压降过大等问题,以实现吸附除磷工艺在实际工程中的应用,以聚氨酯填料为载体,水溶性聚氨酯为介质,将水化硅酸钙负载到聚氨酯填料上制成负载型除磷填料。研究了制备条件对除磷填料除磷效果的影响,采用扫描电子显微镜(SEM)和傅里叶变换红外光谱仪(FTIR)观察分析了负载前后水化硅酸钙微观结构及化学基团的变化;利用除磷填料作为除磷吸附床的滤料,研究了运行条件对吸附床除磷效果的影响。在此基础上,利用响应曲面法研究了除磷吸附床磷酸盐去除率和各变量之间的关系,并对工艺参数进行了优化。结果表明,水性聚氨酯溶液的浓度和用量分别为100 g/L和50 ml,水化硅酸钙的质量为12 g的条件下所制备的除磷填料除磷效果最好;SEM和FTIR分析结果显示,水化硅酸钙负载前后其孔隙结构和化学基团没有明显的变化;预测模型的方差分析结果表明,HRT(X 1)、进水ρ(PO4 3--P)(X 2)、温度(X 3)、初始pH(X 4)以及X 1 X 2,X 1 X 4,X 2 X 3,X 2 X 4的交互作用均对磷酸盐的去除具有显著影响 (P<0.05),但X 1 X 3的交互作用对磷酸盐的去除影响不显著。通过预测模型获得的最佳运行条件为:HRT为79.77 min,进水ρ(PO4 3--P)为1.70 mg/L, 温度为34.04℃,pH为9.68。在该条件下,反应器对磷酸盐的去除率可以达到93.46%。  相似文献   

13.
垃圾焚烧飞灰中的氯含量影响其在水泥窑协同处置生料中的占比,因此需要对飞灰做脱氯处理。利用XRD对飞灰氯元素的存在形态研究表明:氯元素以水溶性氯和非水溶性氯2种形态存在于飞灰中,炉排炉飞灰的水溶性氯化物为CaCl2·Ca(OH)2·H2O、CaClOH、CaCl2·2H2O、KCl和NaCl,非水溶性氯化物为AlOCl和Ca10(Si2O72(SiO4)Cl2(OH)2等;流化床飞灰的水溶性氯以CaCl2·2H2O和KCl形式存在,非水溶性氯以AlOCl、Ca10(Si2O72(SiO4)Cl2(OH)2和Ca4OCl6等形式存在。对水洗脱除水溶性氯的研究结果显示:对于炉排炉飞灰,控制液固比(mL/g,下同)为10+4+2、3次常温水洗,水溶性氯脱除率达97.01%;对于流化床飞灰,控制液固比组合6+6+4、3次常温水洗,水溶性氯脱除率达99.17%;酸、碱洗及高温煅烧均能降低飞灰非水溶性氯含量,其中煅烧处理后的炉排炉飞灰残氯质量分数为0.36%、流化床飞灰为0.45%。  相似文献   

14.
李石雄  黄元浩  廖蓓玲 《化工进展》2020,39(z1):175-179
在配合物的水热合成过程中往往可以发现新的化学反应和催化机理。本文通过[Zn(L)2·(H2O)2·(NO3)2](L=4(3H)-喹唑酮)配合物在130℃催化乙腈分子中的CC键断裂,原位合成化合物2-甲基-4(3H)-喹唑酮。利用红外、元素分析和X射线单晶衍射表征分析2-甲基-4(3H)-喹唑酮和[Zn(L)2·(H2O)2·(NO3)2]的结构,结果表明[Zn(L)2·(H2O)2·(NO3)2]和2-甲基-4(3H)-喹唑酮属于三斜晶系,P-1空间群。三组温度控制实验表明,温度对2-甲基-4(3H)-喹唑啉酮的形成有着重要的影响,并且温度高于130℃有利于该催化反应的进行。采取电喷雾质谱表征2-甲基-4(3H)-喹唑酮的形成机理发现,[Zn(L)2·(H2O)2·(NO3)2]催化乙腈分子中的CC键断裂,生成(CN)2和·CH3。·CH3有选择性地引入到4(3H)-喹唑酮中的C原子和N原子之间。本文对原位引入CH3有着指导作用。  相似文献   

15.
SAPO-56 (framework type: AFX) has a framework topology slightly different from that of zeolite chabazite (framework type: CHA). While metal substituted aluminophosphate chabazite analogues can be prepared under a variety of experimental conditions with dozens of different amines, the synthesis of SAPO-56 type materials has been more difficult, particularly in non-SAPO compositions. Prior to this work, the growth of large crystals of the AFX-type materials suitable for single crystal diffraction has not been possible in any composition. Here we report the synthesis and single crystal structure of a magnesium aluminophosphate denoted as MAPO-AFX. This represents the first time that the AFX-type topology is made in a metal aluminophosphate composition. The synthesis was accomplished with a novel polyether diamine as the structure-directing agent. Crystal data for MAPO-AFX, (RH2)0.10(NH4)0.45[Mg0.65Al1.35(PO4)2](H2O) where R=O[CH2CH2O(CH2)3NH2]2, space group P-31c (#163), Z=12, MoK radiation, 2θmax=50°, a=13.8425(6) Å, c=20.204(1) Å, V=3352.7(3) Å3, refinement on F2, R(F)=7.94% for 131 parameters and 1218 unique reflections with I>2.0σ(I).  相似文献   

16.
巩有奎  任丽芳  彭永臻 《化工学报》2019,70(4):1550-1558
在(20±2.0)℃ 条件下,以实际生活污水为处理对象,以碳纤维为填料(填充率35%),利用序批式生物膜(sequencing batch biofilm reactor,SBBR)反应器,通过限氧曝气,成功实现了亚硝酸型同步生物脱氮(simultaneous nitrification and denitrification,SND)过程。荧光原位杂交技术(fluorescence in-situ hybridization,FISH)半定量表明,氨氧化菌(ammonia oxidizing bacteria, AOB)是硝化系统中的优势菌种。微生物将外碳源以聚β–羟基烷酸酯(poly-β-hydroxyalkanoate,PHA)的形式储存在体内,作为后续反硝化过程所需内碳源。DO=0.5 mg/L,SBBR系统NH4 +-N和TN去除率分别为95%以上和80.4%,SND效率达77.9%。出水NO x --N小于10 mg/L,且以NO2 --N为主。DO=2.0、1.2和0.5 mg/L时,系统N2O释放量分别为1.38、2.39和1.65 mg/L。AOB的好氧反硝化过程和低氧条件下以PHA作为内碳源的NO x --N反硝化过程,都会导致N2O释放。低DO水平是实现亚硝酸型同步脱氮过程和降低N2O释放的关键因素。低DO促进了AOB的竞争优势,形成了良好的缺氧微环境,降低了COD降解速率,为反硝化过程提供外碳源作为电子供体,从而降低了N2O释放量。  相似文献   

17.
采用等温溶解平衡法研究了三元体系KH2PO4-(NH2)2CO-H2O在313.15 K下的溶解度数据,根据溶解度数据绘制了等温相图,采用湿渣法和X射线衍射法对平衡固相的组成进行了分析。结果表明三元体系KH2PO4-(NH2)2CO-H2O为简单共饱和型体系,相图中有1个共饱和点、2条单变量曲线、3个结晶区;采用Wilson和NRTL模型关联该体系的溶解度数据,关联计算值与实验值基本吻合。其中Wilson模型的相对平均偏差(RAD)和均方根差(RMSD)分别为3.34%、0.17%;NRTL模型的RAD和RMSD分别为10.53%、0.38%。对比三元体系KH2PO4-(NH2)2CO-H2O在多个温度下相平衡的结晶区域,发现在中、低温阶段降低温度有利于尿素[(...  相似文献   

18.
本文利用溶液法制备了K2Ba[B4O5(OH)4]2·8H2O,并将其进行热处理制备得到了KBaB5O9,利用XRD、FT-IR、TG-DTA-DTG对样品进行了表征。分析研究了由K2Ba[B4O5(OH)4]2·8H2O热处理制备KBaB5O9过程中的物相变化过程,其物相变化经历脱结晶水、脱羟基、重结晶、再分解、熔融再结晶5个阶段,其中结晶水的脱失分两步进行。运用Kissinger法、Flynn-Wall-Ozawa法、Šatava-Šesták法对K2Ba[B4O5(OH)4]2·8H2O结晶水第二步脱失过程的动力学参数进行了计算,可知K2Ba[B4O5(OH)4]2·8H2O结晶水第二步脱失过程的活化能Es为151.94 kJ/mol,指前因子的对数值lg As为21.25 min-1,机理函数G(α)=(1-2α/3)-(1-α)2/3(其中α为转化率)。  相似文献   

19.
郑勋  徐宇  花儿 《化工学报》2019,70(z2):85-93
通过前期实验研究,己基乙二胺-三氟甲磺酸([HHex][TFS])型质子化离子液体(protic ionic liquid,PIL)的极性部位具有两个氨基,亲水性较强,能够与水混溶90%(质量)(H2O/ PIL)以上。因此利用密度泛函理论(density functional theory,DFT),在M06-2X/6-311G(d,p)的水平下,对 [HHex][TFS]与H2O分子间形成的氢键作用进行了研究。设计了[HHex][TFS]分别与nH2O (n = 1, 2, 6) 相结合的构型,并得到了较稳定构型共8种(S1~S8),计算了其分子间的相互作用能(ΔE 0 BSSE)、分子振动频率(Δν)、二阶微扰能、电子密度(ρ c)以及Laplace值(?2 ρ c)。分析结果显示,[HHex][TFS]与水分子间形成了较强的氢键,[HHex][TFS]与H2O结合数量增加,构型中氢键相互作用增强,即S4(n=1)<S6(n=2)<S8(n=6)。  相似文献   

20.
Levyne-type zeolites were synthesized from gels of initial compositions 4.5Na2O-6MeQI-xAl2O3 30SiO2-500H2O, with MeQ = methylquinuclidinium and 0.6 ≤ x ≥ 3 at 150 ≤ t ≥ 190 °C. The 29Si NMR spectra show the presence of two crystallographically different sites in the structure. The 27Al NMR spectra also suggest the presence of two different tetrahedral Al atoms incorporated in the structure. A rather high amount of defect groups SiOM and Si(OM)2 with M = MeQ, Na and/or H are present in the precursor samples. The Si(OM)2 groups are eliminated during calcination, and a certain amount of SiOM still persists after calcination. The combined 13C NMR and thermal analysis data allowed one to interpret the nature of the two different types of MeQ+ ions occluded in the levyne channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号