首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 331 毫秒
1.
以木屑为原料,利用高温固定床反应器,通过高温水蒸气气化制取富氢燃气,考察了气化温度(750~1000℃)和水蒸气流量(0.290~1.409 g/min)对燃气中H2的体积分数、热值、产气率等指标的影响。实验结果表明:不同的气化温度和水蒸气流量对燃气各组分体积分数有很大的影响,较高的气化温度和适当的水蒸气引入量有利于氢气的产生,但是过高的温度和过量水蒸气的引入会造成燃气热值降低。综合考虑各方面影响,水蒸气气化的最适条件为气化温度900℃,水蒸气流量1.033 g/min,在该条件下,所制得的气化燃气中H2体积分数为45.74%,热值为11.69 MJ/m3,产气率为1.96 L/g。  相似文献   

2.
在高温固定床反应器中,以木屑炭为原料,进行木屑炭CO2气化的特性研究。考察了气化温度和CO2流量对燃气各组分体积分数、热值、固体产率、产气率的影响。结果表明:随着气化温度从750 ℃升高到950 ℃,CO体积分数明显增加,CO2体积分数明显减少,燃气热值增加较明显,而从950 ℃升高到1 050 ℃时,燃气热值增加趋势减缓。CO2作为气化介质,随着其流量增加,固体产率减少,气体产率增加,燃气组分中CO2体积分数明显增加,CO体积分数先增加后减少,燃气热值先增大后减小。CO2流量为15 mL/(min·g)时,燃气热值最大。气化温度950 ℃、CO2流量15 mL/(min·g)为较佳的气化条件,此时气化制备的气体中CO体积分数为51.51%,CO2体积分数为37.99%,燃气热值为8.03 MJ/m3,产气率为0.78 L/g。  相似文献   

3.
生物质下吸式气化炉气化制备富氢燃气实验研究   总被引:1,自引:0,他引:1  
以制取富氢燃气为目标,在自热式下吸式气化炉反应器内,进行了生物质下吸式气化炉富氧/水蒸气及空气气化的制氢特性研究。实验结果表明,与空气气化相比,富氧/水蒸气气化可显著提高氢产率和产气热值。在实验条件范围内,最大氢产率达到45.16 g/kg;最大低位热值达到11.11 MJ/m3。在富氧/水蒸气气化条件下,燃气中H2+CO体积分数达到63.27%—72.56%,高于空气气化条件下的52.19%—63.31%。富氧/水蒸气气化条件下的H2/CO体积比比值为0.70—0.90,低于空气气化条件下的1.06—1.27。实验结果证实:生物质下吸式气化炉富氧/水蒸气气化是一种有效的制取可再生氢源的工艺路线。  相似文献   

4.
以玉米秸秆与无烟煤为原料,在循环流化床中进行空气-水蒸汽气化实验,采用预热装置将气化剂(空气、水蒸汽)由常温加热至500℃,考察气化温度、气化剂类型及生物质掺混比对气化燃气组分和热值、气化效率及碳转率等指标的影响.结果表明,提高气化温度可增大碳转化率及气化效率,950℃时无烟煤单独气化效率最高,850℃时玉米秸秆掺混比为20%的混合试样气化效率最高.选择空气-水蒸汽作气化剂时,H2体积分数由1.80%增至15.53%.玉米秸秆掺混比增加可促进CO生成,抑制CO_2生成,掺混比高于40%时会降低燃气热值及碳转化率.空气作气化剂,玉米秸秆掺混比为20%时燃气热值最高,空气-水蒸汽作气化剂,玉米秸秆掺混比40%时燃气热值最高.  相似文献   

5.
宁思云  应浩  徐卫  孙云娟  尹航  贾爽  刘光华 《化工进展》2019,38(3):1308-1315
以木炭为原料,选用KOH、K2CO3、KHCO3、KNO3为催化剂,在上吸式固定床气化炉中,进行水蒸气催化气化制取合成气实验。考察了不同催化剂、催化剂用量、水蒸气流量、气化温度对木炭水蒸气气化的炭转化率、产氢率、气体组成体积分数和H2/CO值的影响。实验通过炭吸收催化剂溶液来负载催化剂,实验结果表明:4种催化剂都可提高木炭气化效率,在浸渍相同质量分数的催化剂溶液下,催化活性顺序为KOH>K2CO3>KHCO3>KNO3。碳转化率及产氢率都随着催化剂溶液浓度的增加而增大,但浓度过高增加趋势逐渐变缓,催化剂溶液质量分数在4%~6%较为合适。增加水蒸气流量,气体产物中H2体积分数增大,H2/CO值增大。升高温度可促进炭气化反应,950℃时碳转化率和产氢率分别达到98.7%和145.23g/kg。实验可得到H2/CO比1.53~4.09范围间的合成气,可用于合成甲醇、甲烷、二甲醚等燃料。  相似文献   

6.
以稻草为生物质原料,水蒸气为介质,白云石为催化剂,在固定床气化炉中进行生物质水蒸气气化等反应,考察了白云石粒径(5~20mm)、白云石床高(550~1 000mm)和煅烧白云石等对生物质水蒸气气化特性的影响。结果表明,在气化炉中装入白云石,有助于生物质水蒸气气化、催化裂解、二氧化碳重整和水蒸气重整等反应进行。白云石粒径减小、白云石床高和煅烧白云石含量增加,有利于产气中氢体积分数的增加。当白云石粒径为5~10mm、白云石床高为1 000mm和煅烧白云石为100%时,产气中氢体积分数最大为53.18%,产氢率最大为0.92m3/kg,产气率最大为1.72m3/kg,气化效率最大为99.93%,水蒸气近似分解率最大为51.28%。  相似文献   

7.
在现有生物质气化反应器及焦油处理方法的基础上,开发出一种整体式新型生物质气化催化反应器,并对该反应器进行相关的实验研究。实验研究结果表明:当木粉进料速率为6.48 g/min,空燃比RE为0.23,气化温度在500—670℃,这种整体式新型生物质气化催化反应器内有、无催化剂时对木粉气化产生的燃气中焦油的含量以及气体组分有明显影响;当采用钴与氧化钴的质量分数为20%,氧化钙的质量分数为80%的钴基催化剂作为焦油裂解催化剂,裂解温度为800℃,标态下体积空时为1.8 s的情况下,燃气中夹带的焦油可完全被催化裂解,同时燃气中的气体成分氢体积分数可从无催化剂时的15%提高到有催化剂时的35%,净提高20%。同时也对使用前后的钴基催化剂进行了XRD表征分析,发现氧化钙在生物质气化过程中具有一定的CO2捕集能力。  相似文献   

8.
废菌棒是食用菌生产过程中产生的残余废弃物,其再利用对于资源节约与环境保护具有重要意义。本文采用循环流化床气化炉对废菌棒进行了气化试验,分别研究空气当量比、水蒸气配比对气化炉运行温度、气化燃气组分与热值、焦油含量、气化效率及碳转化率等气化特性的影响规律。结果表明:空气当量比由0.20增大至0.35时,循环流化床运行温度与碳转化率升高,气化燃气中的CO2体积分数增大,CO与焦油含量及气化燃气热值下降,气化效率呈现先增大后减小的趋势;空气当量比为0.26时气化效率达到最大74.86%,此时燃气热值为5.59MJ/m3。以空气为主气化介质,采用水蒸气作为辅助气化剂,可以改善气化燃气品质,提升气化效率。当空气当量比为0.26、水蒸气配比为0.2时,废菌棒具有较好的空气-水蒸气气化特性,燃气热值与气化效率分别达到最大值6.14MJ/m3与83.73%。  相似文献   

9.
以稻草为生物质原料,水蒸气为介质,白云石为催化剂,在固定床气化炉中进行生物质水蒸气气化等反应,考察了白云石粒径(5~20 mm)、白云石床高(550~1 000 mm)和煅烧白云石等对生物质水蒸气气化特性的影响。结果表明,在气化炉中装入白云石,有助于生物质水蒸气气化、催化裂解、二氧化碳重整和水蒸气重整等反应进行。白云石粒径减小、白云石床高和煅烧白云石含量增加,有利于产气中氢体积分数的增加。当白云石粒径为5~10 mm、白云石床高为1 000 mm和煅烧白云石为100%时,产气中氢体积分数最大为53.18%,产氢率最大为0.92 m^3/kg,产气率最大为1.72 m^3/kg,气化效率最大为99.93%,水蒸气近似分解率最大为51.28%。  相似文献   

10.
基于Aspen Plus软件建立石油焦流化床空气-水蒸气复合气化模型,该模型的数值模拟结果与实验值能够吻合.利用Aspen Plus灵敏度分析模块考查了气化温度、压强、空气当量比(equivalence ratio)、水蒸气与石油焦质量比(m_(steam)∶m_(pc),下标pc为petroleum coke)对燃气体积分数、燃气热值和气体产率的影响.结果表明:当选取恰当的空气当量比和m_(steam)∶m_(pc)值时,温度对燃气体积分数影响不大;较大的压强有利于甲烷的产生,使燃气热值提高;随着空气当量比的增加,氧化反应强度增强,燃气热值减少;较高的m_(steam)∶m_(pc)有利于氢气的产生,但水蒸气通入量过高使燃气热值下降;燃气热值与气体产率变化趋势相反.  相似文献   

11.
贾爽  应浩  徐卫  孙云娟  尹航  宁思云  孙宁 《化工进展》2018,37(4):1402-1407
以生物质炭为原料在上吸式固定床气化炉中进行水蒸气气化制备富氢合成气,考察了不同原料、粒径和催化剂对生物质炭水蒸气气化影响。结果表明,不同类型炭气化结果存在较大差异,其中木片炭气化结果最优,其次是玉米芯炭和稻壳炭,秸秆炭气化结果最差,木片炭产氢率最大为222.8g/kg。粒径的改变主要影响炭转化率,炭转化率随着粒径的增加呈增加趋势。通过炭吸收方式负载催化剂为有效的方法,其中在相同钾盐质量分数下,KOH催化能力较优于K2CO3,且气化速率为未加催化剂条件下的两倍。炭转化率随着碱液浓度的增加而增加,但浓度过高会增加灰分含量从而不利于产氢率,玉米芯炭催化气化最高产氢率为197.8g/kg,在碱质量分数为6%下获得。  相似文献   

12.
《煤化工》2015,(4):61-64
在STA449 F3型热天平上,采用等温热重法,对不同比例的KOH催化剂和不同粒度的煤样在反应温度650℃~800℃下的气化反应特性进行了研究。实验结果表明:KOH对煤-CO2气化反应有明显的催化作用,在催化剂质量分数10%,反应进行到20 min时,随着温度由650℃升高至800℃,碳的转化率由11%增至70%;在反应前段和后段,催化剂含量对碳的转化率影响不同;随着煤粒度由50μm~70μm增加到100μm~200μm,煤气化反应指数由0.075降低至0.013。在温度为650℃~800℃、催化剂质量分数5%~20%条件下实验,测得催化剂质量分数在10%、温度在750℃时,催化效果最好。  相似文献   

13.
郑志行  李谦  张家元  周浩宇 《化工进展》2021,40(4):2152-2160
基于Aspen Plus软件的Gibbs自由能最小化法,本文建立了煤粉在Shell气流床中的气化模型。该模型预测气化温度和煤气组成,与文献试验结果吻合良好。利用Aspen Plus的灵敏度分析模块研究了氧煤比、氧气体积分数和氧气预热温度对气化结果的影响,并进行了正交模拟计算,研究了以上3种因素共同作用的结果。结果表明:氧煤比增加使碳转化率升高,冷煤气效率先升高后降低,并在氧煤比为0.9kg/kg时取得最大值77.72%;氧气体积分数增加使煤气热值、碳转化率和冷煤气效率升高,氧煤比为0.8kg/kg且氧气体积分数为50%时,冷煤气效率可达82.6%;氧气预热温度增加使碳转化率、冷煤气效率升高,氧煤比为0.8kg/kg且氧气预热温度为600℃时,冷煤气效率可达82%。通过正交模拟计算综合分析,氧煤比对冷煤气效率和碳转化率的影响作用占首位,氧气体积分数对煤气热值、有效气体积分数、煤气产率的影响作用占首位,氧气预热温度对煤气化指标影响较小。在实验范围内,当氧煤比0.8kg/kg、氧气体积分数100%、氧气预热温度300℃时的煤气热值达到最大值3011kcal/m3;当氧煤比为0.8kg/kg、氧气体积分数60%~100%、氧气预热温度300~500℃时的冷煤气效率达到最大值83.46%。  相似文献   

14.
为实现生物质能量的高效清洁利用,本研究基于两段式富氧气化系统改进燃气品质,并将获得的洁净高热值可燃气用于燃气轮机燃烧。通过Aspen Plus模拟研究分析了氧体积分数、气化温度对气化特性、燃机运行特性的影响,研究结果证实了生物质气化燃气在燃气轮机应用的可行性,并发现氧体积分数提高对改善生物质气化燃气品质及系统发电效率具有重要意义。两段式气化二次气化温度提高会引起气化效率及系统发电效率下降,因此气化温度需控制在合适范围。在满足生物质灰分完全熔融液化分离的前提下,气化温度可取较低值;两段式气化系统可选择氧体积分数为50%~60%时较佳。在氧体积分数60%、气化温度1 200 ℃时,生物质气化-燃气轮机集成发电系统发电效率(ηt)达最优,为34%,此时生物质可燃气低位热值(QLHV)为9.54 MJ/m3,两段式气化效率(ηCGE)为78.65%。  相似文献   

15.
《化学工程》2015,(12):47-52
分别以H_2O(g)和CO_2为气化剂,采用自制的煤炭地下气化模拟实验装置完成大颗粒鹤壁烟煤和晋城无烟煤的气化模拟实验,用便携式气体分析仪对煤气组分进行测定,并用SEM分析气化后的半焦,考察了气化剂种类、气化温度和气化时间对2种煤气化反应特性的影响。结果表明:CO_2为气化剂时,反应温度越高,煤气中CO,H_2,CH_4含量越多,煤气热值也越高;以H_2O(g)为气化剂时,H_2含量随着反应温度升高增大,CO含量则先增大后降低,CH4明显降低。气化温度1 000℃时煤气热值最高,鹤壁煤和晋城煤热值分别达13.12 MJ/m~3和11.25 MJ/m~3;气化进行30 min时反应速率最大,60 min时热值最高;相同气化剂条件下鹤壁烟煤的煤气热值高于晋城无烟煤煤气;相同煤种条件下H_2O(g)为气化剂时的煤气热值高于CO_2。  相似文献   

16.
采用自制蒸气气化炉试验系统,以废弃松木屑为原料制作成型颗粒燃料,采用高温水蒸气气化,考察不同气化温度及气料比(S/B)对生物质水蒸气气化反应的影响,利用XRD射线衍射和傅里叶红外图谱分别分析生物质反应残留物及气化焦油,反应残留物的比表面积及空隙特性由BET多点法和BJH法测得。结果表明,蒸汽流量和反应温度有利于促进蒸汽重整、碳还原、CO的变换反应,当S/B由0.5增加到1.5时,温度为900℃,H2体积分数由52.32%增长到67.3%;随温度升高(750~950℃,S/B=1),松木颗粒的失重率由82.91%升高到91.27%,其微孔结构充分发展,平均孔直径由20.96 nm降低到3.76 nm,焦油中脂肪烃含量增加,芳香烃因发生开环反应使其含量降低,有益于降低气化气中焦油含量。  相似文献   

17.
流化床作为生物质气化反应器试验研究   总被引:13,自引:1,他引:13  
在流化床生物质气化炉内 ,用空气进行气化生物质 (花生壳 )的试验研究 ,分析的参数是当量比ER 0 .2— 0 .4 5 ,气化床的温度 75 0— 85 0℃和加入二次风。当ER在 0 .2 5— 0 .33,气化燃气热值为 6 .2— 6 .8MJ/m3 ,气体产量在 2 6 0— 390m3 /h ,生物质燃烧时比气化产量在 1.2 8— 2 .0 3m3 /kg之间 ,炭转化率在 5 3%— 80 %。并对 7种农、林废弃物进行了初步气化试验研究 ,生成的燃气体积分数 :CO为 14 %— 18% ,H2 一般低于 6 % ,甲烷 4 %— 12 %。燃气热值在 4 70 0— 710 0kJ/m3 。试验结果表明 ,在流化床生物质气化炉中 ,通过在悬浮空间加入二次风 ,可使燃气热值得到提高。  相似文献   

18.
以木屑炭为原料,在上吸式固定床气化炉中进行水蒸气气化制备合成气,考察了温度和水蒸气流量对木屑炭水蒸气气化的产物分布、炭转化率、产气率、组成含量和H2/CO值的影响。结果表明:升高温度有助于木屑炭气化,炭转化率和产气率分别在950 ℃下达到最大值99.2%和4.16 L/g,但温度升高会导致H2从65.8%降至61.2%,同时H2/CO也呈下降趋势,从10.3降至3.35;水蒸气流量的增加可提升H2,从59.8%升至62%,但流量升至0.6 g/min时气化结果趋于稳定。水蒸气气化的最佳操作条件为900 ℃,水蒸气流量0.6 g/min,此条件下炭转化率、产气率和热值分别达到93.3%、4.06 L/g和9.04 MJ/m3,H2/CO值为4.11,适合于合成甲烷。  相似文献   

19.
采用自主研发的连续运行主动配气下吸式固定床气化炉为试验平台,研究了不同配气工艺下气化炉内温度场和压力场的变化,并且以稻草为气化原料进行气化试验,分析了不同配气工艺对燃气组分、燃气热值和燃气中焦油质量浓度的影响。结果表明:改变配气工艺从单层配气到双层配气再到三层配气,反应炉内温度逐渐升高,反应炉内各层压力逐渐均匀,三层配气时炉内氧化层温度在1 100℃左右,炉内最高压力为24.1 kPa,三层配气时气化炉内温度场和压力场的分布具有较高气化反应特性;同单层配气和双层配气相比,三层配气工艺下以稻草为气化原料燃气组分中H2和CO的体积分数明显提高,其值分别为10.23%和20.49%,相比于单层配气提高了3.08%和2.28%,单层配气、双层配气和三层配气工艺下燃气热值分别为4 656.82 kJ/m3、4 934.99 kJ/m3和5 476.77 kJ/m3,燃气中焦油质量浓度分别为0.834×10-3kg/m3、0806×10-3kg/m3和0.721×10-3kg/m3。  相似文献   

20.
为研究不同催化剂、不同当量比及不同温度条件下生物质气化效果,采用1.5 MW、产气率4500m~3/h循环流化床试验平台,分别对木屑和稻壳两种生物质原料的催化气化特性进行试验研究。试验结果表明:对于同一种生物质原料,采用橄榄石作为催化剂时,其气化气体中的可燃成分含量更高,橄榄石催化效果优于白云石和菱镁矿;而与稻壳相比,木屑气化产出生物质气体中的可燃成分比重更高;随着当量比的增加,气体热值均有所下降,其原因是当量比增大导致了空气中的氮气更多的进入气化炉,稀释了气化气的体积浓度,从而使得气体热值明显下降。在当量比ER为0.1和0.2条件下,采用橄榄石作为催化剂可以得到热值较高的生物质气;三种催化剂的最佳催化反应温度均为750℃左右,ER=0.2时的气体产率明显比ER=0.1高,说明更多的空气进入气化炉参与反应,产品气体积有所增加,但是将降低气体热值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号