首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
添加物对酯化淀粉薄膜力学性能的影响   总被引:1,自引:0,他引:1  
研究甘油、PVA、玻纤和偶联剂对酯化淀粉薄膜力学性能的影响.增加甘油含量使酯化淀粉薄膜的断裂伸长率增大,而拉伸强度减小;当偶联剂和玻璃纤维添加量分别为酯化淀粉3%、7%时,薄膜的拉伸强度最大为25 MPa,断裂伸长率下降;随着PVA含量的增加,薄膜拉伸强度和断裂伸长率都不断上升.研究结果表明:当PVA含量为30%,甘油含量为10%,偶联剂含量为3%,玻璃纤维含量为7%时,其力学性能可以达到所需要求.  相似文献   

2.
聚乙烯醇(PVA)是一种性能优异的可降解包装材料,但是,其熔点与分解温度接近,在受热熔融时发生分解。改性剂能降低聚乙烯醇的熔点,延缓分解,改善PVA的热塑加工性能,但是,影响了PVA薄膜的力学性能。实验研究了增塑剂、交联剂、稳定剂等改性助剂对PVA薄膜力学性能的影响。结果表明,随着丙三醇的添加,PVA薄膜拉伸强度降低,断裂伸长率提高,当丙三醇含量增加至40%时,断裂伸长率为293.84%;当醇解度为92时,薄膜的拉伸强度为30.54 MPa;添加硼砂能提升薄膜的拉伸强度,降低薄膜的断裂伸长率;当添加1份的氯化钙热稳定剂时,减少了PVA薄膜在加工过程中的热分解,对薄膜力学性能提升幅度较大,拉伸强度和断裂伸长率分别达到27.89 MPa、250.36%。  相似文献   

3.
《塑料》2019,(5)
以热塑性聚氨酯(PUR-T)和聚氯乙烯(PVC)为原材料,采用机械熔融共混制备PUR-T/PVC共混弹性体材料,并利用增塑剂和纳米CaCO_3对弹性体进行改性,通过力学性能、流变性能和扫描电镜(SEM)分析了增塑剂种类、用量以及偶联剂改性纳米CaCO_3对PUR-T/PVC共混弹性体性能的影响。结果表明:TEC增塑PUR-T/PVC共混弹性体的复数黏度、储能模量、损耗模量最低,增塑效果较佳,当TEC用量为20份时,PUR-T/PVC共混弹性体的拉伸强度为14. 68 MPa,断裂生长率为974. 99%;经硅烷偶联剂改性的纳米CaCO_3增强PUR-T/PVC共混弹性体的复数黏度、储能模量、损耗模量较佳,能有效提高PUR-T/PVC共混弹性体的力学性能,当TEC用量为20份时,PUR-T/PVC共混弹性体的力学性能较佳,拉伸强度为18. 94 MPa,断裂伸长率为1 074. 75%。  相似文献   

4.
采用熔融共混制备聚氧乙烯–聚氧丙烯醚嵌段共聚物增塑聚乳酸,研究聚氧乙烯–聚氧丙烯醚嵌段共聚物用量对聚乳酸/聚氧乙烯–聚氧丙烯醚嵌段共聚物共混体系流变性能、力学性能、热性能和微观结构的影响。当添加聚氧乙烯–聚氧丙烯醚嵌段共聚物的质量分数为20%时,聚乳酸/聚氧乙烯–聚氧丙烯醚嵌段共聚物共混体系的熔体流动速率为15.6g/(10min),比未增塑时提高约9倍,断裂伸长率为341.86%,撕裂强度为23.7N/cm,拉伸强度为44.5MPa,玻璃化转变温度从纯聚乳酸的60.1℃降到26.9℃。随着聚氧乙烯–聚氧丙烯醚嵌段共聚物用量的增加,共混体系的拉伸强度先下降后升高,断裂伸长率呈上升趋势,撕裂强度先下降后上升最后渐趋于稳定,聚乳酸链段的活动能力增强,增塑效果明显。扫描电子显微镜分析表明,当聚氧乙烯–聚氧丙烯醚嵌段共聚物质量分数≥12%时,共混体系脆冷断面的褶皱、粗糙度和裂纹明显增加,吸收能量能力增强,表现为断裂伸长率和撕裂强度提高。  相似文献   

5.
以3种不同聚合度的聚乙烯醇(PVA0588、PVA1788、PVA2488)为原料,添加相同质量分数的碱木质素采用流延法制备共混膜。采用电子万能试验机、扫描电子显微镜、热重分析仪等分析手段对共混膜进行分析表征,并测定了共混膜在不同极性溶剂中力学性能的变化。结果表明:在碱木质素添加量为15%时,碱木质素可较好地分散于PVA相中,3种共混膜的力学性能与各自对应的纯PVA膜相比都有了一定的提高,且当聚合度由PVA0588变化到PVA2488时,共混膜的拉伸强度从35.16MPa增加到48.30MPa,提高了37.37%,断裂伸长率从172.22%增加到247.08%,提高了43.47%;由于PVA聚合度的增大和碱木质素的添加,均使得共混膜的耐溶剂性能和热稳定性增加。  相似文献   

6.
采用己内酰胺/氯化镁为复配增塑剂,通过流延法制备出了增塑改性的聚乙烯醇(PVA)膜。采用DSC、TGA、XRD分析和力学性能与熔体流动性能测试的方法考察了己内酰胺/氯化镁复配增塑剂对PVA性能的影响。结果表明:氯化镁与己内酰胺复配具有良好的协同增塑效应,其对PVA的增塑效果优于单独使用己内酰胺;复配增塑剂能够有效破坏PVA分子间的氢键,降低PVA的结晶度;加入复配增塑剂后,PVA的熔点降低,热稳定性提高,熔体流动性有所改善,拉伸强度降低,断裂伸长率上升。  相似文献   

7.
制备了不同改性程度的丁二酸酯化淀粉,并与聚乙烯醇(PVA)以溶液共混法制备了丁二酸酯淀粉/PVA共混膜,通过X射线衍射仪表征共混膜与酯化膜的结构,通过扫描电子显微镜观测其表面结构,并测试了共混膜的力学性能。结果表明,丁二酸酯化改性程度、PVA分子结构以及酯化淀粉/PVA的共混比对共混膜的力学性能有影响;随着改性程度的增加,共混膜的断裂强度及断裂伸长率均增大;随着PVA聚合度与醇解度的增大,共混膜的断裂强度及断裂伸长率均增大;随着淀粉含量的增加,共混膜的断裂强度先减小后增大,断裂伸长率逐渐减小;当共混比为50:50时,断裂强度最小。  相似文献   

8.
《塑料科技》2016,(3):54-57
利用正交试验设计增塑剂与聚乙烯醇(PVA)共混配方,并进行熔融共混模压成型制备增塑PVA薄膜,通过对薄膜的力学性能、熔点、耐水性等性能进行测试,运用正交试验法研究复配增塑剂配方中蒸馏水、甘油、己内酰胺和二甲基亚砜的用量对薄膜拉伸强度、熔点和吸水率的影响。结果表明:增塑改性PVA的复配增塑配方中己内酰胺对拉伸强度影响程度最大,蒸馏水对熔点和吸水率的影响较大。较优的改性PVA复配增塑剂配方为:蒸馏水10 g,甘油10 g,己内酰胺20 g,二甲基亚砜8 g。  相似文献   

9.
《塑料》2017,(6)
通过添加明胶(GEL)来提高聚乙烯醇(PVA)的热稳定性及改善其加工性能。采用热重分析仪、差示扫描量热仪、X射线衍射仪、万能试验机、紫外可见分光光度计分别对PVA/GEL共混物的热失重率、熔点、结晶性、力学性能以及透光性进行表征。结果表明:添加少量的明胶可以显著提高PVA的热分解温度,抑制了PVA的第一步降解,降低PVA的熔融温度。当添加15%的明胶时,PVA的热分解温度由237℃提高至323℃,增加了86℃,使PVA具有较高的热稳定性,而PVA的加工窗口则拓宽了104℃。随着明胶含量的增加,PVA/GEL共混材料的拉伸强度和断裂伸长率都有所降低,但共混材料仍保持较好的力学性能和透光性。  相似文献   

10.
采用熔融法制备热塑性木薯淀粉(TPS)/聚乙烯醇(PVA)复合材料,研究PVA和增塑剂的种类、用量对TPS/PVA复合材料的加工、力学性能、回生行为及结构影响。研究结果发现随着PVA用量的增加,TPS/PVA复合材料的塑化时间缩短、塑化扭矩和平衡扭矩增大;随着甘油增塑剂用量的增加,TPS/PVA复合材料的塑化时间、扭矩降低。TPS/PVA-1788复合材料的塑化时间、塑化扭矩和平衡扭矩均比TPS/PVA-1799复合材料的小;采用尿素/甲酰胺复配增塑TPS/PVA复合材料的塑化时间、塑化扭矩和平衡扭矩比使用甘油小。随着PVA用量的增加,TPS/PVA复合材料的拉伸强度增加;TPS/PVA-1799复合材料的拉伸强度比TPS/PVA-1788复合材料的高。使用甘油增塑TPS/PVA复合材料的拉伸强度高于使用尿素/甲酰胺复配增塑剂。随着回生时间增加,TPS/PVA复合材料的回生焓增加。添加PVA加速TPS的回生过程,随着PVA用量进一步增加,TPS/PVA复合材料回生降低。PVA能削弱TPS的氢键作用,提高TPS塑化程度,有利于TPS/PVA复合材料的均匀性。  相似文献   

11.
Starch/polyvinyl alcohol (PVA) blend films were prepared by using corn starch, polyvinyl alcohol (PVA), glycerol (GL), and citric acid (CA) as additives and glutaraldehyde (GLU) as crosslinking agent for the mixing process. The additives, drying temperature, and the influence of crosslinker of films on the properties of the films were investigated. The mechanical properties, tensile strength (TS), elongation at break (% E), degree of swelling (DS), and solubility (S) of starch/PVA blend film were examined adding GL and CA as additives. At all measurement results, except for DS, the film adding CA was better than GL because hydrogen bonding at the presence of CA with hydroxyl group and carboxyl group increased the inter/intramolecular interaction between starch, PVA, and additives. CA improves the properties of starch/PVA blend film compared with GL. TS, % E, DS, and S of film adding GLU as crosslinking agent were examined. With increasing GLU contents, TS increases but % E, DS, and S value of GL‐added and CA‐added films decrease. When the film was dried at low temperature, the physical properties of the films were clearly improved because the hydrogen bonding was activated at low temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2554–2560, 2006  相似文献   

12.
为克服淀粉膜脆且硬的缺陷,制备季铵醚化-辛烯基琥珀酸酯化淀粉(QAS),并将它与聚乙烯醇(PVA)进行混合来制备共混膜;用X射线衍射仪进行共混膜结晶度测定,用扫描电子显微镜观察共混膜的表面形貌,研究QAS/PVA共混比和PVA结构对共混膜力学性能的影响。结果表明,QAS/PVA共混膜的结晶度比QAS膜的结晶度有所降低;随着QAS含量的增加,共混膜的断裂伸长率逐渐减小,断裂强度先减小后增大,当QAS/PVA共混比为50/50(质量比,下同)时,断裂强度达到最小值;随着PVA聚合度和醇解度的增加,共混膜的断裂强度和断裂伸长率也随之增大。  相似文献   

13.
This study investigated the effects of urea/ethanolamine mixture (UE) on the crystallinity, thermal, and mechanical properties of poly(vinyl alcohol) (PVA) films. PVA films were prepared from solutions containing PVA, urea, ethanolamine, and water by casting and evaporating at 50°C for 12 h. The plasticization efficiency of UE was compared with that of glycerol (GL), the conventional plasticizer for PVA. The properties of PVA films plasticized by UE and GL, abbreviated to UE-plasticized PVA film and GL-plasticized PVA film, respectively, were investigated by Fourier-transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and mechanical testing. It was proved that UE could form more stable hydrogen bonding with the hydroxyl group of PVA molecule and was more effective in breaking the hydrogen bonds between the hydroxyl groups. Thus, the crystallinity of UE-plasticized PVA films was lower than that of GL-plasticized PVA films. The melting temperatures of UE-plasticized PVA films were lower than those of GL-plasticized PVA films. It was found that UE-plasticized PVA film showed a higher degradation temperature compared with GL-plasticized PVA film. The degree of swelling of UE-plasticized PVA film was higher than that of GL-plasticized PVA film but solubility (S) of UE-plasticized PVA film was lower in aqueous solution. Furthermore, UE-plasticized PVA films show lower tensile strength and higher elongation at break (E) than those of GL-plasticized PVA films. The tensile strength, E, and Young's modulus of PVA film containing 30% UE mixture reached 50.78 MPa, 591.19% and 76.9 MPa, respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
We report on the physical properties of films synthesized with native corn starch (NCS) and resistant starch (RS4) prepared with NCS. NCS and RS4/poly(vinyl alcohol) (PVA) blend films were synthesized with a mixing process and casting method. Glycerol (GL) and citric acid (CA) were used as additives. Glutaraldehyde (GLU) was used as a crosslinking agent of the films. RS4 was synthesized with sodium trimetaphosphate and sodium tripolyphosphate as a crosslinker. Then, the RS4 thus synthesized was confirmed by the pancreatin–gravimetry method, swelling power, differential scanning calorimetry, and X‐ray diffraction. The tensile strength, elongation, swelling behavior, and solubility of the films were measured. The results of the measurements indicated that the RS4‐added film was better than the NCS‐added film. In particular, the RS4/PVA blend film with CA as an additive showed physical properties superior to those of the other films. Also, the physical properties with GLU added as a crosslinking agent to the films were investigated. With increasing GLU contents, the tensile strength increased but the elongation, swelling behavior, and solubility values of the GL‐added and CA‐added films decreased. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

15.
采用流延成膜法制备了以尿素/甲酰胺为复配增塑剂改性的聚乙烯醇(PVA)改性薄膜。采用FTIR研究了复配增塑剂尿素/甲酰胺和PVA之间的相互作用,采用XRD、DSC、TGA和拉伸性能测定对改性后的PVA膜性能进行了测试表征。结果表明,尿素/甲酰胺能与PVA形成氢键作用,破坏PVA的结晶结构,降低PVA膜的结晶度。尿素/甲酰胺的加入降低了PVA的熔点,提高了PVA的热分解温度。改性后的PVA膜的拉伸强度降低,断裂伸长率提高。  相似文献   

16.
The relation of PVA/SF blending ratio and freezing temperature with the morphology, fine structure and properties of porous PVA/SF blend membranes prepared by means of freeze drying was investigated. It was indicated that the pore diameter of the blend membranes remarkably decreased and the pore density obviously increased with increasing proportion of PVA or decreasing freezing temperature. With increasing proportion of PVA, the crystallinity of the blend membrane increased. When the blend ratio of PVA/SF was larger than 25/75 or 50/50, the strength, the elongation and the initial tensile modulus of the blend membrane increased somewhat and the compressibility decreased a little with increasing proportion of PVA or decreasing freezing temperature. Therefore, by increasing the proportion of PVA or decreasing the freezing temperature, porous SF/PVA blend membranes could be prepared which had smaller pore diameter, larger pore density, higher crystallinity, strength and elongation.  相似文献   

17.
于晓波  刘峰  王小菊  刘震  李龙  赵国 《橡胶科技》2022,20(3):0131-0136
试验研究硅烷偶联剂Si69,Si75和KH560对白炭黑填充溴化丁基橡胶(BIIR)/天然橡胶(NR)并用胶性能的影响。结果表明:随着硅烷偶联剂Si75或KH560用量的增大,胶料的挤出膨胀率呈增大趋势,门尼粘度和F;减小,Payne效应减弱,定伸应力和拉伸强度呈增大趋势,拉断伸长率和撕裂强度呈减小趋势,加工性能和老化后耐屈挠性能改善;硅烷偶联剂Si75和KH560能够明显改善白炭黑填充BIIR/NR并用胶的加工性能和老化后的耐屈挠性能。  相似文献   

18.
Blend films from nature soy protein isolates (SPI) and synthetical poly(vinyl alcohol) (PVA) compatibilized by glycerol were successfully fabricated by a solution‐casting method in this study. Properties of compatibility, mechanical properties, and thermal stability of SPI/PVA films were investigated based on the effect of the PVA concentration. XRD tests confirm that the SPI/PVA films were partially crystalline materials with peaks of 2θ = 20°. And, the addition of glycerol will insert the crystalline structure and destroy the blend microstructure of SPI/PVA. Differential scanning calorimetry (DSC) tests show that SPI/PVA blend polymers have a single glass transition temperature (Tg) between 80 and 115.0°C, which indicate that SPI and PVA have good compatibility. The tension tests show that SPI/PVA films exhibit both higher tensile strength (σb) and percentage elongation at break point (P.E.B.). Thermogravimetric analysis (TGA) and water solubility tests show that SPI/PVA blend polymer has more stable stability than pure SPI. All the results reflect that SPI/PVA/glycerol blend film provides a convenient and promising way to prepare soy protein plastics for practical application. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
Linear low‐density polyethylene (LLDPE)/poly(vinyl alcohol) (PVA) blends were prepared by melt mixing. LLDPE/PVA weight ratios between 90/10 and 40/60 were studied. The effects of the silane coupling agent 3‐(trimethoxysilyl)propyl methacrylate on processability, gel fraction, component interaction, compatibility, thermal stability, tensile properties, and morphology of the LLDPE/PVA blends were investigated. The results indicated that the presence of silane increased the equilibrium torque of the LLDPE/PVA blends because of crosslinking and better compatibility between LLDPE and PVA. The degree of crosslinking was quantified by gel fraction measurements, and crosslinking was confirmed by Fourier Transform Infrared Spectroscopy analysis. The melting temperature depression of PVA and LLDPE further suggested the formation of crosslinks. The thermal stability and tensile properties such as tensile strength, elongation at break, and Young's modulus of the blends also increased with the incorporation of silane. Improved compatibility between LLDPE and PVA in the blends with silane was demonstrated by the interconnected rough material observed in scanning electron microscopy images that differed from the morphology of the LLDPE/PVA blends without silane. J. VINYL ADDIT. TECHNOL., 2012. © 2012 Society of Plastics Engineers  相似文献   

20.
Thermoplastic starch (TPS)/poly(vinyl alcohol) (PVA) blend films were modified by crosslinking through soaking the films in glutaraldehyde aqueous solution and then heating in an oven. The effects of the concentration of the glutaraldehyde aqueous solution, soaking time, reaction temperature, and time on the crosslinking reaction were investigated. The moisture absorption and mechanical properties of the films were measured to characterize the influence of the crosslinking modification. It was found that the crosslinking modification significantly reduced the moisture sensitivity of the TPS/PVA blend films and increased the tensile strength and Young's modulus but decreased the elongation at break of the TPS/PVA blend films. The described method could be used for posttreating TPS/PVA‐based products to optimize their properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号