首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Disruptions in the human gut microbiome have been associated with a cycle of hepatocyte injury and regeneration characteristic of chronic liver disease. Evidence suggests that the gut microbiota can promote the development of hepatocellular carcinoma through the persistence of this inflammation by inducing genetic and epigenetic changes leading to cancer. As the gut microbiome is known for its effect on host metabolism and immune response, it comes as no surprise that the gut microbiome may have a role in the response to therapeutic strategies such as immunotherapy and chemotherapy for liver cancer. Gut microbiota may influence the efficacy of immunotherapy by regulating the responses to immune checkpoint inhibitors in patients with hepatocellular carcinoma. Here, we review the mechanisms by which gut microbiota influences hepatic carcinogenesis, the immune checkpoint inhibitors currently being used to treat hepatocellular carcinoma, as well as summarize the current findings to support the potential critical role of gut microbiome in hepatocellular carcinoma (HCC) immunotherapy.  相似文献   

2.
The human gut is the largest organ with immune function in our body, responsible for regulating the homeostasis of the intestinal barrier. A diverse, complex and dynamic population of microorganisms, called microbiota, which exert a significant impact on the host during homeostasis and disease, supports this role. In fact, intestinal bacteria maintain immune and metabolic homeostasis, protecting our organism against pathogens. The development of numerous inflammatory disorders and infections has been linked to altered gut bacterial composition or dysbiosis. Multiple factors contribute to the establishment of the human gut microbiota. For instance, diet is considered as one of the many drivers in shaping the gut microbiota across the lifetime. By contrast, alcohol is one of the many factors that disrupt the proper functioning of the gut, leading to a disruption of the intestinal barrier integrity that increases the permeability of the mucosa, with the final result of a disrupted mucosal immunity. This damage to the permeability of the intestinal membrane allows bacteria and their components to enter the blood tissue, reaching other organs such as the liver or the brain. Although chronic heavy drinking has harmful effects on the immune system cells at the systemic level, this review focuses on the effect produced on gut, brain and liver, because of their significance in the link between alcohol consumption, gut microbiota and the immune system.  相似文献   

3.
The gut microbiota has been known to modulate the immune responses in chronic liver diseases. Recent evidence suggests that effects of dietary foods on health care and human diseases are related to both the immune reaction and the microbiome. The gut-microbiome and intestinal immune system play a central role in the control of bacterial translocation-induced liver disease. Dysbiosis, small intestinal bacterial overgrowth, translocation, endotoxemia, and the direct effects of metabolites are the main events in the gut-liver axis, and immune responses act on every pathways of chronic liver disease. Microbiome-derived metabolites or bacteria themselves regulate immune cell functions such as recognition or activation of receptors, the control of gene expression by epigenetic change, activation of immune cells, and the integration of cellular metabolism. Here, we reviewed recent reports about the immunologic role of gut microbiotas in liver disease, highlighting the role of diet in chronic liver disease.  相似文献   

4.
Recent studies have suggested that an alteration in the gut microbiota and their products, particularly endotoxins derived from Gram-negative bacteria, may play a major role in the pathogenesis of liver diseases. Gut dysbiosis caused by a high-fat diet and alcohol consumption induces increased intestinal permeability, which means higher translocation of bacteria and their products and components, including endotoxins, the so-called “leaky gut”. Clinical studies have found that plasma endotoxin levels are elevated in patients with chronic liver diseases, including alcoholic liver disease and nonalcoholic liver disease. A decrease in commensal nonpathogenic bacteria including Ruminococaceae and Lactobacillus and an overgrowth of pathogenic bacteria such as Bacteroidaceae and Enterobacteriaceae are observed in cirrhotic patients. The decreased diversity of the gut microbiota in cirrhotic patients before liver transplantation is also related to a higher incidence of post-transplant infections and cognitive impairment. The exposure to endotoxins activates macrophages via Toll-like receptor 4 (TLR4), leading to a greater production of proinflammatory cytokines and chemokines including tumor necrosis factor-alpha, interleukin (IL)-6, and IL-8, which play key roles in the progression of liver diseases. TLR4 is a major receptor activated by the binding of endotoxins in macrophages, and its downstream signal induces proinflammatory cytokines. The expression of TLR4 is also observed in nonimmune cells in the liver, such as hepatic stellate cells, which play a crucial role in the progression of liver fibrosis that develops into hepatocarcinogenesis, suggesting the importance of the interaction between endotoxemia and TLR4 signaling as a target for preventing liver disease progression. In this review, we summarize the findings for the role of gut-derived endotoxemia underlying the progression of liver pathogenesis.  相似文献   

5.
Psoriasis is a chronic, immune-mediated inflammatory disease that affects around 125 million people worldwide. Several studies concerning the gut microbiota composition and its role in disease pathogenesis recently demonstrated significant alterations among psoriatic patients. Certain parameters such as Firmicutes/Bacteroidetes ratio or Psoriasis Microbiome Index were developed in order to distinguish between psoriatic and healthy individuals. The “leaky gut syndrome” and bacterial translocation is considered by some authors as a triggering factor for the onset of the disease, as it promotes chronic systemic inflammation. The alterations were also found to resemble those in inflammatory bowel diseases, obesity and certain cardiovascular diseases. Microbiota dysbiosis, depletion in SCFAs production, increased amount of produced TMAO, dysregulation of the pathways affecting the balance between lymphocytes populations seem to be the most significant findings concerning gut physiology in psoriatic patients. The gut microbiota may serve as a potential response-to-treatment biomarker in certain cases of biological treatment. Oral probiotics administration as well as fecal microbial transplantation were most reported in bringing health benefits to psoriatic patients. However, the issue of psoriatic bacterial gut composition, its role and healing potential needs further investigation. Here we reviewed the literature on the current state of the relationship between psoriasis and gut microbiome.  相似文献   

6.
The liver directly accepts blood from the gut and is, therefore, exposed to intestinal bacteria. Recent studies have demonstrated a relationship between gut bacteria and nonalcoholic fatty liver disease (NAFLD). Approximately 10–20% of NAFLD patients develop nonalcoholic steatohepatitis (NASH), and endotoxins produced by Gram-negative bacilli may be involved in NAFLD pathogenesis. NAFLD hyperendotoxicemia has intestinal and hepatic factors. The intestinal factors include impaired intestinal barrier function (leaky gut syndrome) and dysbiosis due to increased abundance of ethanol-producing bacteria, which can change endogenous alcohol concentrations. The hepatic factors include hyperleptinemia, which is associated with an excessive response to endotoxins, leading to intrahepatic inflammation and fibrosis. Clinically, the relationship between gut bacteria and NAFLD has been targeted in some randomized controlled trials of probiotics and other agents, but the results have been inconsistent. A recent randomized, placebo-controlled study explored the utility of lubiprostone, a treatment for constipation, in restoring intestinal barrier function and improving the outcomes of NAFLD patients, marking a new phase in the development of novel therapies targeting the intestinal barrier. This review summarizes recent data from studies in animal models and randomized clinical trials on the role of the gut–liver axis in NAFLD pathogenesis and progression.  相似文献   

7.
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease which is characterized by extremely complex pathogenetic mechanisms and multifactorial etiology. Some of the many pathophysiological mechanisms involved in the development of NAFLD include oxidative stress, impaired mitochondrial metabolism, inflammation, gut microbiota, and interaction between the brain-liver-axis and the regulation of hepatic lipid metabolism. The new therapeutic approaches in the treatment of NAFLD are targeting some of these milestones along the pathophysiological pathway and include drugs like agonists of peroxisome proliferator-activated receptors (PPARs), glucagon-like peptide-1 (GLP-1) agonists, sodium/glucose transport protein 2 (SGLT2) inhibitors, farnesoid X receptor (FXR) agonists, probiotics, and symbiotics. Further efforts in biomedical sciences should focus on the investigation of the relationship between the microbiome, liver metabolism, and response to inflammation, systemic consequences of metabolic syndrome.  相似文献   

8.
Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease (NAFLD), in which most patients exhibit non-progressive, non-alcoholic fatty liver (NAFL) attributable to simple steatosis. Multiple hits, including genetic differences, fat accumulation, insulin resistance and intestinal microbiota changes, account for the progression of NASH. NAFLD is strongly associated with obesity, which induces adipokine secretion, endoplasmic reticulum (ER) and oxidative stress at the cellular level, which in turn induces hepatic steatosis, inflammation and fibrosis. Among these factors, gut microbiota are acknowledged as having an important role in initiating this multifactorial disease. Oxidative stress is considered to be a key contributor in the progression from NAFL to NASH. Macrophage infiltration is apparent in NAFL and NASH, while T-cell infiltration is apparent in NASH. Although several clinical trials have shown that antioxidative therapy with vitamin E can effectively control hepatitis pathology in the short term, the long-term effects remain obscure and have often proved to be ineffective in many other diseases. Several long-term antioxidant protocols have failed to reduce mortality. New treatment modalities that incorporate current understanding of NAFLD molecular pathogenesis must be considered.  相似文献   

9.
The introduction of immune checkpoint inhibitors has constituted a major revolution in the treatment of patients with cancer. In contrast with the traditional cytotoxic therapies that directly kill tumor cells, this treatment modality enhances the ability of the host’s immune system to recognize and target cancerous cells. While immune checkpoint inhibitors have been effective across multiple cancer types, overcoming resistance remains a key area of ongoing research. The gut microbiota and its role in cancer immunosurveillance have recently become a major field of study. Gut microbiota has been shown to have direct and systemic effects on cancer pathogenesis and hosts anti-tumor immune response. Many studies have also shown that the host microbiota profile plays an essential role in the response to immunotherapy, especially immune checkpoint inhibitors. As such, modulating this microbial environment has offered a potential path to overcome the resistance to immune checkpoint inhibitors. In this review, we will talk about the role of microbiota in cancer pathogenesis and immune-system activity. We will also discuss preclinical and clinical studies that have increased our understanding about the roles and the mechanisms through which microbiota influences the response to treatment with immune checkpoint inhibitors.  相似文献   

10.
Non-alcoholic fatty liver disease (NAFLD) is a leading cause of liver cirrhosis and hepatocellular carcinoma. NAFLD is associated with metabolic disorders such as obesity, insulin resistance, dyslipidemia, steatohepatitis, and liver fibrosis. Liver-resident (Kupffer cells) and recruited macrophages contribute to low-grade chronic inflammation in various tissues by modulating macrophage polarization, which is implicated in the pathogenesis of metabolic diseases. Abnormalities in the intestinal environment, such as the gut microbiota, metabolites, and immune system, are also involved in the pathogenesis and development of NAFLD. Hepatic macrophage activation is induced by the permeation of antigens, endotoxins, and other proinflammatory substances into the bloodstream as a result of increased intestinal permeability. Therefore, it is important to understand the role of the gut–liver axis in influencing macrophage activity, which is central to the pathogenesis of NAFLD and nonalcoholic steatohepatitis (NASH). Not only probiotics but also biogenics (heat-killed lactic acid bacteria) are effective in ameliorating the progression of NASH. Here we review the effect of hepatic macrophages/Kupffer cells, other immune cells, intestinal permeability, and immunity on NAFLD and NASH and the impact of probiotics, prebiotics, and biogenesis on those diseases.  相似文献   

11.
In chronic liver disease, the causative factor is important; however, recently, the intestinal microbiome has been associated with the progression of chronic liver disease and the occurrence of side effects. The immune system is affected by the metabolites of the microbiome, and diet is the primary regulator of the microbiota composition and function in the gut–liver axis. These metabolites can be used as therapeutic material, and postbiotics, in the future, can increase or decrease human immunity by modulating inflammation and immune reactions. Therefore, the excessive intake of nutrients and the lack of nutrition have important effects on immunity and inflammation. Evidence has been published indicating that microbiome-induced chronic inflammation and the consequent immune dysregulation affect the development of chronic liver disease. In this research paper, we discuss the overall trend of microbiome-derived substances related to immunity and the future research directions.  相似文献   

12.
Trillions of microorganisms inhabit the mucosal membranes maintaining a symbiotic relationship with the host’s immune system. B cells are key players in this relationship because activated and differentiated B cells produce secretory immunoglobulin A (sIgA), which binds commensals to preserve a healthy microbial ecosystem. Mounting evidence shows that changes in the function and composition of the gut microbiota are associated with several autoimmune diseases suggesting that an imbalanced or dysbiotic microbiota contributes to autoimmune inflammation. Bacteria within the gut mucosa may modulate autoimmune inflammation through different mechanisms from commensals ability to induce B-cell clones that cross-react with host antigens or through regulation of B-cell subsets’ capacity to produce cytokines. Commensal signals in the gut instigate the differentiation of IL-10 producing B cells and IL-10 producing IgA+ plasma cells that recirculate and exert regulatory functions. While the origin of the dysbiosis in autoimmunity is unclear, compelling evidence shows that specific species have a remarkable influence in shaping the inflammatory immune response. Further insight is necessary to dissect the complex interaction between microorganisms, genes, and the immune system. In this review, we will discuss the bidirectional interaction between commensals and B-cell responses in the context of autoimmune inflammation.  相似文献   

13.
Breast cancer is the most frequently diagnosed cancer in women worldwide. The disease and its treatments exert profound effects on an individual’s physical and mental health. There are many factors that impact an individual’s risk of developing breast cancer, their response to treatments, and their risk of recurrence. The community of microorganisms inhabiting the gastrointestinal tract, the gut microbiota, affects human health through metabolic, neural, and endocrine signaling, and immune activity. It is through these mechanisms that the gut microbiota appears to influence breast cancer risk, response to treatment, and recurrence. A disrupted gut microbiota or state of ‘dysbiosis’ can contribute to a biological environment associated with higher risk for cancer development as well as contribute to negative treatment side-effects. Many cancer treatments have been shown to shift the gut microbiota toward dysbiosis; however, the microbiota can also be positively manipulated through diet, prebiotic and probiotic supplementation, and exercise. The objective of this review is to provide an overview of the current understanding of the relationship between the gut microbiota and breast cancer and to highlight potential strategies for modulation of the gut microbiota that could lead to improved clinical outcomes and overall health in this population.  相似文献   

14.
Liver cirrhosis is one of the most prevalent chronic liver diseases worldwide. In addition to viral hepatitis, diseases such as steatohepatitis, autoimmune hepatitis, sclerosing cholangitis and Wilson’s disease can also lead to cirrhosis. Moreover, alcohol can cause cirrhosis on its own and exacerbate chronic liver disease of other causes. The treatment of cirrhosis can be divided into addressing the cause of cirrhosis and reversing liver fibrosis. To this date, there is still no clear consensus on the treatment of cirrhosis. Recently, there has been a lot of interest in potential treatments that modulate the gut microbiota and gut-liver axis for the treatment of cirrhosis. According to recent studies, modulation of the gut microbiome by probiotics ameliorates the progression of liver disease. The precise mechanism for relieving cirrhosis via gut microbial modulation has not been identified. This paper summarizes the role and effects of the gut microbiome in cirrhosis based on experimental and clinical studies on absorbable antibiotics, probiotics, prebiotics, and synbiotics. Moreover, it provides evidence of a relationship between the gut microbiome and liver fibrosis.  相似文献   

15.
Dietary change leads to a precipitous increase in non-alcoholic fatty liver disease (NAFLD) from simple steatosis to the advanced form of non-alcoholic steatohepatitis (NASH), affecting approximately 25% of the global population. Although significant efforts greatly advance progress in clarifying the pathogenesis of NAFLD and identifying therapeutic targets, no therapeutic agent has been approved. Astaxanthin (ASTN), a natural antioxidant product, exerts an anti-inflammation and anti-fibrotic effect in mice induced with carbon tetrachloride (CCl4) and bile duct ligation (BDL); thus, we proposed to further investigate the potential effect of ASTN on a diet-induced mouse NASH and liver fibrosis, as well as the underlying cellular and molecular mechanisms. By treating pre-development of NASH in mice induced with a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD), we have demonstrated that oral administration ASTN preventively ameliorated NASH development and liver fibrosis by modulating the hepatic immune response, liver inflammation, and oxidative stress. Specifically, ASTN treatment led to the reduction in liver infiltration of monocyte-derived macrophages, hepatic stellate cell (HSC) activation, oxidative stress response, and hepatocyte death, accompanied by the decreased hepatic gene expression of proinflammatory cytokines such as TNF-α, TGF-β1, and IL-1β. In vitro studies also demonstrated that ASTN significantly inhibited the expression of proinflammatory cytokines and chemokine CCL2 in macrophages in response to lipopolysaccharide (LPS) stimulation. Overall, in vivo and in vitro studies suggest that ASTN functions as a promising therapeutic agent to suppress NASH and liver fibrosis via modulating intrahepatic immunity.  相似文献   

16.
The objective of the present study was to review the existing data on the association between Zn status and characteristics of gut microbiota in various organisms and the potential role of Zn-induced microbiota in modulating systemic effects. The existing data demonstrate a tight relationship between Zn metabolism and gut microbiota as demonstrated in Zn deficiency, supplementation, and toxicity studies. Generally, Zn was found to be a significant factor for gut bacteria biodiversity. The effects of physiological and nutritional Zn doses also result in improved gut wall integrity, thus contributing to reduced translocation of bacteria and gut microbiome metabolites into the systemic circulation. In contrast, Zn overexposure induced substantial alterations in gut microbiota. In parallel with intestinal effects, systemic effects of Zn-induced gut microbiota modulation may include systemic inflammation and acute pancreatitis, autism spectrum disorder and attention deficit hyperactivity disorder, as well as fetal alcohol syndrome and obesity. In view of both Zn and gut microbiota, as well as their interaction in the regulation of the physiological functions of the host organism, addressing these targets through the use of Zn-enriched probiotics may be considered an effective strategy for health management.  相似文献   

17.
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the second leading cause of cancer-related deaths worldwide. Chronic infections with hepatitis B virus (HBV) and hepatitis C virus (HCV), alcoholic liver disease (ALD), and non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) are the major extrinsic risk factors of HCC development. Genetic background is pivotal in HCC pathogenesis, and both germline mutations and single nucleotide polymorphism (SNP) are intrinsic risk factors of HCC. These HCC risk factors predispose to hepatic injury and subsequent activation of fibrogenesis that progresses into cirrhosis and HCC. Probiotic bacteria can mitigate HCC risk by modulating host gut microbiota (GM) to promote growth of beneficial microbes and inhibit HCC-associated dysbiosis, thus preventing pathogen-associated molecular patterns (PAMPs)-mediated hepatic inflammation. Probiotics have antiviral activities against HBV and HCV infections, ameliorate obesity and risk of NAFLD/NASH, and their antioxidant, anti-proliferative, anti-angiogenic, and anti-metastatic effects can prevent the HCC pathogenesis. Probiotics also upregulate the expression of tumor suppressor genes and downregulate oncogene expression. Moreover, metabolites generated by probiotics through degradation of dietary phytochemicals may mitigate the risk of HCC development. These multiple anticancer mechanisms illustrate the potential of probiotics as an adjuvant strategy for HCC risk management and treatment.  相似文献   

18.
Chronic hepatitis C virus (HCV) infection is an important cause of morbidity and mortality in people coinfected with human immunodeficiency virus (HIV). Several studies have shown that HIV infection promotes accelerated HCV hepatic fibrosis progression, even with HIV replication under full antiretroviral control. The pathogenesis of accelerated hepatic fibrosis among HIV/HCV coinfected individuals is complex and multifactorial. The most relevant mechanisms involved include direct viral effects, immune/cytokine dysregulation, altered levels of matrix metalloproteinases and fibrosis biomarkers, increased oxidative stress and hepatocyte apoptosis, HIV-associated gut depletion of CD4 cells, and microbial translocation. In addition, metabolic alterations, heavy alcohol use, as well drug use, may have a potential role in liver disease progression. Understanding the pathophysiology and regulation of liver fibrosis in HIV/HCV co-infection may lead to the development of therapeutic strategies for the management of all patients with ongoing liver disease. In this review, we therefore discuss the evidence and potential molecular mechanisms involved in the accelerated liver fibrosis seen in patients coinfected with HIV and HCV.  相似文献   

19.
The liver is well recognized as a non-immunological visceral organ that is involved in various metabolic activities, nutrient storage, and detoxification. Recently, many studies have demonstrated that resident immune cells in the liver drive various immunological reactions by means of several molecular modulators. Understanding the mechanistic details of interactions between hepatic host immune cells, including Kupffer cells and lymphocytes, and various hepatic pathogens, especially viruses, bacteria, and parasites, is necessary. MicroRNAs (miRNAs), over 2600 of which have been discovered, are small, endogenous, interfering, noncoding RNAs that are predicted to regulate more than 15,000 genes by degrading specific messenger RNAs. Several recent studies have demonstrated that some miRNAs are associated with the immune response to pathogens in the liver. However, the details of the underlying mechanisms of miRNA interference in hepatic host–pathogen interactions still remain elusive. In this review, we summarize the relationship between the immunological interactions of various pathogens and hepatic resident immune cells, as well as the role of miRNAs in the maintenance of liver immunity against pathogens.  相似文献   

20.
Liver transplantation has been identified as the most effective treatment for patients with end-stage liver diseases. However, hepatic ischemia reperfusion injury (IRI) is associated with poor graft function and poses a risk of adverse clinical outcomes post transplantation. Cell death, including apoptosis, necrosis, ferroptosis and pyroptosis, is induced during the acute phase of liver IRI. The release of danger-associated molecular patterns (DAPMs) and mitochondrial dysfunction resulting from the disturbance of metabolic homeostasis initiates graft inflammation. The inflammation in the short term exacerbates hepatic damage, leading to graft dysfunction and a higher incidence of acute rejection. The subsequent changes in the graft immune environment due to hepatic IRI may result in chronic rejection, cancer recurrence and fibrogenesis in the long term. In this review, we mainly focus on new mechanisms of inflammation initiated by immune activation related to metabolic alteration in the short term during liver IRI. The latest mechanisms of cancer recurrence and fibrogenesis due to the long-term impact of inflammation in hepatic IRI is also discussed. Furthermore, the development of therapeutic strategies, including ischemia preconditioning, pharmacological inhibitors and machine perfusion, for both attenuating acute inflammatory injury and preventing late-phase disease recurrence, will be summarized in the context of clinical, translational and basic research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号