首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 496 毫秒
1.
本工作利用聚结滤芯过滤性能实验装置,通过改变滤芯内部的滤材排布,研究了聚结层为单一滤材以及由不同滤材排布组合的滤芯过滤性能,分析了聚结层排布方式对过滤效率、压降、饱和度及液体分布的影响。结果表明,由单一滤材组成的滤芯过滤效率随滤材孔径减小而增大,但孔径最小时由于压降较高,导致滤芯综合过滤性能反而最差。疏油在前、亲油在后的聚结层排布方式可提高滤芯过滤效率、减少液滴二次夹带,且以两层相同滤材交错排列的滤芯过滤效率比单层滤材交错排列明显更高,压降也相对较低,使得综合过滤性能显著提升。继续增加进气侧的疏油滤材层数可延缓压降增长、提高运行寿命,滤芯稳态品质因子达到最大值(0.30 kPa-1)。聚结层排布方式对滤芯过滤性能的影响主要通过改变液体分布形式而实现,且末层滤材的通道结构变化是导致不同聚结层排布方式的滤芯过滤性能出现差异的主要原因。  相似文献   

2.
采用聚结型滤芯气液过滤性能实验装置,研究了油雾加载率和表观过滤速度对折叠滤芯过滤性能的影响及涂覆粘合剂对折叠滤芯过滤性能的优化作用。结果表明,涂覆粘合剂后,滤材抗张力强度明显增大,滤材孔径减小。随油雾加载率增大,滤芯过滤层液体运移通道数增加,通道压降升高。初始压降随表观过滤速度增加而升高。粘合剂主要凝固在渗透性低的区域,压降变化较小。表观过滤速度增加抑制了二次夹带,折叠滤芯过滤效率升高,而由于粘合剂脱落,涂覆粘合剂的滤芯过滤效率下降。表观过滤速度为0.10 m/s时,随油雾加载率增大,聚结在滤材表面的粘合剂抑制夹带,滤芯过滤效率升高。  相似文献   

3.
根据ISO-12500标准建立了压缩空气滤芯性能检测系统,将操作压力由0.1 MPa升至0.7 MPa,分析了操作压力对亲油型和疏油型两种滤芯内的液体分布、滤材饱和度和过程压降的影响. 结果表明,操作压力对疏油型滤芯的过程压降、液体运移与饱和度有显著影响,操作压力每上升0.2 MPa,滤芯初始压降上升0.32 kPa,各操作压力下滤芯润湿压降(平衡压降与初始压降的差)为4.5~5.1 kPa,0.7 MPa时最后1层滤材饱和度比0.1 MPa时上升了71%,饱和度沿气体流动方向呈凹型分布,小面积润湿区域增多,稳态压降前出现短暂跃升阶段,可能加剧滤芯二次夹带,导致过滤器下游管道内液滴数增多,降低过滤器效率;操作压力对亲油型滤芯的初始压降影响显著,操作压力每上升0.2 MPa,初始压降上升0.39 kPa;操作压力对液体运移与饱和度影响较小,不同操作压力下各层滤材饱和度的分布规律相同,液体分布无明显差异.  相似文献   

4.
刘宇峰  姬忠礼  陈锋  刘震  常程 《化工学报》2020,71(12):5644-5654
气液聚结元件在压缩气体净化等工业领域应用广泛,目前聚结元件的性能难以满足行业不断增长的需求,但是提高聚结元件过滤效率的同时,阻力也会随之升高,不利于其综合性能的优化。为研制低阻高效的聚结元件,利用不同浓度氟硅氧烷丙烯酸酯溶液对聚结滤材进行疏油改性,分析了表面能不同的滤材在气液过滤过程中压降、过滤效率以及二次夹带现象的变化,并对改性在聚结滤芯上的应用效果进行研究。结果表明,改性滤材在过滤效率提高10%的同时,稳态压降可降低约30%。滤材表面性质变化导致的跳跃压降减小是稳态压降降低的主要原因;滤材内液体分布对扩散、惯性分离作用的增强以及二次夹带的减少是效率提高的主要原因。对于表面能不同的疏油滤材,稳态压降和效率均随表面能的减小而升高。聚结滤芯经过改性后品质因子最大可提高92%。  相似文献   

5.
气液过滤过程中液滴二次夹带现象分析   总被引:7,自引:4,他引:3       下载免费PDF全文
常程  姬忠礼  黄金斌  詹爽  李兰洁 《化工学报》2015,66(4):1344-1352
在天然气长距离输送过程中,天然气夹带的液滴严重影响压缩机组的安全可靠运行。利用所建立的滤芯过滤性能检测装置,以癸二酸二辛酯为实验介质,分析了天然气净化用滤芯气液过滤过程中液滴二次夹带现象的特征,比较了滤材润湿性和过滤速度等参数的影响。结果表明:当滤芯仅由聚结层组成时,滤芯过滤过程中存在液滴二次夹带现象,二次夹带将导致下游气体中液滴数量增多,且有较大液滴出现,稳态阶段滤芯累积效率在大粒径处下降;液滴在滤材表面的润湿性对二次夹带现象具有重要影响,可润湿型滤材表面更易出现液滴二次夹带现象,在相同过滤速度下,若需提高过滤效率,宜选用不可润湿型滤材制作工业滤芯;在0.1~0.3 m·s-1过滤速度范围内,提高过滤速度可减少液滴二次夹带现象的发生,与不可润湿型滤芯相比,可润湿型滤芯过滤效果的改善更为明显;滤芯增加排液层可有效消除液滴二次夹带现象。  相似文献   

6.
随着天然气的广泛应用,提高天然气的气体品质就显得尤为重要。主要研究天然气气液过滤分离。介绍了天然气生产和管输过程中主要的气液分离设备,其中聚结分离器的分离效率的高低主要取决于过滤元件即聚结滤芯的聚结作用的好坏,并对国内自主生产的滤芯与国外成熟技术研发的滤芯进行比较,对国内外滤芯的性能和效率优缺点进行重点分析研究,以便国内可以自主生产更适合的滤芯。研究表明国产滤芯的压降性能要落后于国外滤芯,而在过滤效率方面则具有优势,所以需要根据实际需求选择合适的滤芯。  相似文献   

7.
天然气用聚结过滤元件性能的测定与分析   总被引:1,自引:0,他引:1       下载免费PDF全文
熊至宜  姬忠礼  冯亮  杨云兰 《化工学报》2012,63(6):1742-1748
为了评价目前天然气净化用滤芯气液分离性能,利用聚结型滤芯气液过滤性能的检测装置研究了滤芯的放置方式、滤芯的有效厚度及填充密度等相关因素对气液过滤性能的影响。结果表明:在相同条件下,滤芯垂直于地面放置比水平位置放置时排液较顺畅,气液过滤效果较好,并且压降至少降低25%;不同材质滤芯,随着滤芯厚度在6~32mm范围内增加,滤芯稳态压降增加,过滤器出口液滴浓度减小,过滤性能提高;滤芯的填充密度增加,滤芯压降增大,过滤器出口液滴浓度减小。  相似文献   

8.
通过气固、气液交替和混合过滤实验,研究了天然气工业用滤芯气液固三相过滤性能.通过观测滤芯表面显微结构,研究了不同阶段滤芯压降变化的原因和过滤机理.结果表明,在相同过滤条件下,含尘滤芯气液过滤时,由于液滴与滤饼层相互作用,滤芯表面纤维结构不断变化,依据压降的变化趋势,过滤过程可分为4个阶段:气固过滤、表面滤饼层脱落、液滴填充及表面过滤.含液滤芯气固过滤可分为初始过滤和粉尘填充2个阶段;滤芯持液量不同,气固过滤压降呈相似变化规律.三相过滤压降的增长速率介于气固过滤和气液过滤之间,液滴可有效抑制气固过滤压降的增长.  相似文献   

9.
利用现场高压和实验室常压滤芯性能评价装置,对比了不同工况下的滤芯过滤性能,分析了液体物性和油雾浓度对滤芯过滤性能的影响规律,提出了滤芯改进方法并进行了效果验证。结果表明,由于气液相互作用改变,高压下滤芯过滤效率相比常压略低,但常压工况过滤性能变化规律能反映现场实际运行性能。与气体流量相比,液体黏度对中效滤芯的过滤效率影响更大,且滤芯在过滤高黏度液体时才会出现压降的显著上升。油雾浓度对中效滤芯的压降影响受液体黏度控制,高黏度时压降随油雾浓度升高而升高,但低黏度时压降基本不随油雾浓度变化。由于流量对液滴扩散捕集作用的影响,低流量时滤芯对高黏度液体的过滤效率随油雾浓度降低反而升高。通过调整滤芯内部的滤材组成及排布方式,可实现小尺寸液滴的高效捕集,对癸二酸二辛酯液滴的过滤效率相比原滤芯至少提升50%。研究结果对于指导天然气储运过程中滤芯性能提升与机理认识具有重要意义。  相似文献   

10.
荷尘状态单纤维过滤压降数值计算与分析   总被引:1,自引:1,他引:0       下载免费PDF全文
朱辉  付海明  亢燕铭 《化工学报》2012,63(12):3927-3936
采用Monte Carlo法和Kuwabara单元模型,模拟了单纤维表面粉尘树枝结构的生长过程。在此基础上,考虑邻近粒子对粉尘树枝中单粒子阻力的影响,给出了荷尘状态单纤维过滤压降模拟模型。结果指出,对所有过滤情形,荷尘单纤维过滤压降随沉积量变化呈现两个阶段性特征;过滤风速、粒子大小和粉尘树枝形态结构对荷尘单纤维过滤压降影响显著;而纤维直径对荷尘单纤维过滤压降影响不明显。在获得单纤维过滤压降随沉积量变化关系后,求解了粒子在模型过滤器中的质量分布,建立了荷尘纤维过滤器过滤压降预测模型,并将模型计算结果与实验结果作了对比。结果表明,过滤风速在0.01~0.3 m·s-1范围内时,计算值与实验结果吻合较好,模型可适用于荷尘纤维过滤器的压降预测。  相似文献   

11.
Fibrous coalescing filters are widely used in a series of processes such as compressed air purification, engine crankcase ventilation, processing and cutting, and are used to remove liquid aerosol particles in the airflow. Pressure drop and ef?ciency of coalescence filters are greatly affected by saturation. It is of importance to establish the relationship among saturation, filter media parameters and operating conditions, which is helpful to optimize the filter design. Coalescence ?lters composed of thin glass fibrous media with micron fiber diameters are widely used in industry, while the saturation of which cannot be accurately predicted by the existing saturation models. This work investigated the relationship between pressure drop and saturation of multi-layered filters with different oleophilic filter media. In this study, there was no sharp boundary between wetting and non-wetting regions within filter media, thus a filter was regarded as a whole capillary system. According to the Jump-and-Channel model and capillary theory, a saturation model was developed. Compared with a large number of published literature data, it is found that when the saturation value is greater than 0.2, the predicted value is in good agreement with the experimental results, and the relative deviation is ≤20%. With the decrease in saturation, the boundaries become more and more obvious between the wetting and non-wetting regions. In this case, there is no need to modify to the capillary radius in the developed model. However, the developed model was also limited by the need for the channel pressure drop measurement, which should be solved in further work.  相似文献   

12.
《分离科学与技术》2012,47(8):1955-1973
Abstract

Coalescing filters are widely used throughout industry for removal of liquid aerosols from gases or the separation of liquid droplets from emulsions. Typical filters are constructed of non-woven fibers. Fibrous filters are capable of efficient removal of micron and submicron sized droplets and particles. The filtration process is highly complex due to variability in fiber sizes, particle sizes, mixtures of particles and droplets, mixture of types of droplets (oil, water, etc.), and effects of viscosity, surface tension, and chemical reactions between components or with the filter fibers. Prediction of filter performance under such complex conditions is difficult.

Performance of a filter depends on many factors like particle and fiber sizes, flow rate, surface properties of the fibers etc. One of those parameters is the saturation of the filter medium. Saturation is a measure of the amount of liquid present in the void space. Prior models assume that the saturation is uniform along the depth of the medium. In real media, the liquid holdup at steady state need not be uniform with position. Local velocity increases when the saturation is high.

In this paper, a steady state model for a coalescing filter is used to evaluate the effects of saturation on void fraction and its subsequent effect on filter performance. Single fiber mechanisms of direct interception and diffusion deposition are used to model droplet capture efficiencies and drag forces. These mechanisms are applied to volume averaged continuum equations in which the saturation is varied linearly with position in the filter. The results show the minimum pressure drop and largest quality factor occurs with a uniform saturation profile and that variation in average saturation has a greater effect on filter performance than does the slope of the linear saturation profile. The model predicts that uniform saturation profile performs better than the other profiles.  相似文献   

13.
An interacting triangular tube bundle model is developed using capillaries of equilateral triangle cross sections. In addition to pressure equilibration among the capillaries, the non-circular tubes allow the wetting phase to reside in the corners and flow continuously in the entire model. An interacting-serial type model is constructed with step changes of tube size along the model, while the total cross-section of the model is kept constant. This model includes trapping of oil which is absent in traditional tube bundle models. Trapping of non-wetting phase in the model in imbibition processes is simulated. The relationship between the residual oil saturation and the complete capillary number CA is investigated. The simulation results obtained by this model are consistent with the results reported in literature of both experimental studies, using actual porous media, and simulations in pore-scale network models. The effects of the tube size, tube size distribution and viscosity ratio on the magnitude of entrapment are also studied using this tube bundle model.  相似文献   

14.
15.
Two-phase flow in porous media depends on many factors, such as displacement vs steady two-phase flow, saturation, wettability conditions, wetting fluid vs non-wetting fluid is displacing, the capillary number, interfacial tension, viscosity ratio, pressure gradient, uniformly wetted vs mixed-wet pore surface, uniform vs distributed pore throats, small vs large pores, well-connected pores vs pores connected by small throats, etc. These parameters determine how the two fluids are distributed in the pores, e.g. whether they flow in seperate channels or side-by-side in the same channels, either with both fluids being continous or only one fluid being continous and the other discontinuous. In displacement, the capillary number and the viscosity ratio determine whether the displacement front is sharp, or if there is either capillary or viscous fingering.  相似文献   

16.
Experimental results on pressure drop and flow patterns for gas–liquid flow through packed beds obtained in the International Space Station with two types of packing are presented and analyzed. It is found that the pressure drop depends on the packing wettability in the viscous–capillary (V–C) regime and this dependence is compared with previously published results developed using short duration low-gravity aircraft tests. Within the V–C regime, the capillary contribution is the dominant force contributing to the pressure drop for the wetting case (glass) versus the viscous contribution dominating for the non-wetting case (Teflon). Outside of the V–C regime, it is also found that hysteresis effects that are often strong in normal gravity gas–liquid flows are greatly diminished in microgravity and pressure drop is nearly independent of packing wettability. A flow pattern transition map from bubble to pulse flow is also compared with the earlier aircraft data.  相似文献   

17.
The evolution of pressure drop, drainage rate, saturation, and efficiency of combined philic, and phobic oil mist filters in real‐time are examined. The experiments used four different filter configurations, with a combination of oleophobic and oleophilic fibrous filter media, and one oleophilic only reference. The effect of separating filter materials of differing wettability, with a mesh, was also explored. It was found that inclusion of a mesh between layers promoted increased drainage rates and resulted in a significantly lower pressure drop across the filter. The overall mass‐based filtration efficiency was also slightly higher for the configurations containing the mesh. Conversely, re‐entrainment of droplets from the rear face of the filter was only observed in filter configurations without the central mesh. Filters with oleophobic initial layers did not display a classical “depth filtration” pressure drop curve. The oleophobic media was found to possess lower steady‐state saturation than oleophilic media. Additionally, the steady‐state saturation of the oleophilic filter media, when placed at the rear of the filter, was lower when the central mesh was present. The saturation values were compared with recently published theory. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2976–2984, 2014  相似文献   

18.
A numerical model has been developed to optimize the design of pleated filter panels. In this model, the fluid flow is modeled by a steady laminar flow and the filter media resistance is governed by the Darcy-Lapwood-Brinkman equation. A finite element method with a nine-node Lagrangian element is used to solve the governing equations. For the rectangularly pleated filter panel, the numerical results agree well with the analytical model of Yu and Goulding (1992) and with his experimental data. The pressure drop increases at small pleat count due to increased media face velocity, and at large pleat count due to increased viscous drag in the pleat spacings. Therefore, an optimal pleat count for minimum pressure drop exists at a certain pleat height for each filter media type. The optimization of rectangular pleated filters, e.g., mini-pleated filter panels, has been performed for six commercial filter media. The optimal pleat count is shown to increase with decreasing media permeability of the filter media. A generalized correlation curve has been found for the six filter media by using a nondimensional parameter analysis. The results can be used to design pleated filter panels with minimum pressure drop.  相似文献   

19.
The objective of this article is to correlate a drag coefficient to the Reynolds number for axial motion of barrel drops on fibers. This work includes effects of vibration-induced motion of droplets and coalescence. The study of motion of drops is important to understand the drainage behavior of droplets. Drainage of liquid helps to eliminate moisture from media samples before applying thermal energy and hence reducing the drying cost. A significant amount of literature describes the mechanisms of droplet capture, coalescence, and drainage from filter media and models are developed at a scale that accounts for the liquid held in the filter through averaged parameters such as saturation. Few papers discuss the motion of individual drops attached to fibers.

The study of drop motion on fibers is of scientific and economic interest for many possible applications like printing, coatings, drug delivery and release, and filters to remove or neutralize harmful chemicals or particulates from air streams. Gas convection–induced drop motion in fibrous materials occurs in coalescing filters, clothes dryers, textile manufacturing, convection ovens, and dewatering of filter cakes. Droplet removal can significantly reduce drying costs by reducing the free moisture contained in fibrous materials prior to applying thermal drying techniques.

In this article, the experimental drag coefficient versus Reynolds number data are compared for 1-D and 3-D cylindrical drop models. The results show that 1-D models are inadequate to predict the drag coefficient but do show the same general trends.  相似文献   

20.
The objective of this article is to correlate a drag coefficient to the Reynolds number for axial motion of barrel drops on fibers. This work includes effects of vibration-induced motion of droplets and coalescence. The study of motion of drops is important to understand the drainage behavior of droplets. Drainage of liquid helps to eliminate moisture from media samples before applying thermal energy and hence reducing the drying cost. A significant amount of literature describes the mechanisms of droplet capture, coalescence, and drainage from filter media and models are developed at a scale that accounts for the liquid held in the filter through averaged parameters such as saturation. Few papers discuss the motion of individual drops attached to fibers.

The study of drop motion on fibers is of scientific and economic interest for many possible applications like printing, coatings, drug delivery and release, and filters to remove or neutralize harmful chemicals or particulates from air streams. Gas convection-induced drop motion in fibrous materials occurs in coalescing filters, clothes dryers, textile manufacturing, convection ovens, and dewatering of filter cakes. Droplet removal can significantly reduce drying costs by reducing the free moisture contained in fibrous materials prior to applying thermal drying techniques.

In this article, the experimental drag coefficient versus Reynolds number data are compared for 1-D and 3-D cylindrical drop models. The results show that 1-D models are inadequate to predict the drag coefficient but do show the same general trends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号