首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 313 毫秒
1.
以聚己二酸二甘酯(PDEGA)为增塑剂,通过双螺杆挤出机制备了聚乳酸(PLA)/聚对苯二甲酸-己二酸-丁二酯(PBAT)/PDEGA共混物,并研究了PLA/PBAT/PDEGA共混物的热性能、结晶行为、力学性能、冲击断面形态、阻隔性能、流变性能和熔体强度。结果表明:加入PDEGA和PBAT,提高了PLA的冷结晶能力,并改善了PLA的柔韧性;PLA/PBAT/PDEGA共混物对水蒸气的阻隔性能受PDEGA和PBAT影响不大;加入PDEGA和PBAT,增强了共混物的流动性。  相似文献   

2.
以聚己二酸二甘酯(PDEGA)为增塑剂,通过双螺杆挤出机制备了聚乳酸(PLA)/聚对苯二甲酸-己二酸-丁二酯(PBAT)/PDEGA共混物,并研究了PLA/PBAT/PDEGA共混物的热性能、结晶行为、力学性能、冲击断面形态、阻隔性能、流变性能和熔体强度。结果表明:加入PDEGA和PBAT,提高了PLA的冷结晶能力,并改善了PLA的柔韧性;PLA/PBAT/PDEGA共混物对水蒸气的阻隔性能受PDEGA和PBAT影响不大;加入PDEGA和PBAT,增强了共混物的流动性。  相似文献   

3.
采用反应共混法制备了聚乳酸/乙烯-丙烯酸甲酯-甲基丙烯酸缩水甘油酯三元共聚物(PLA/EGMA)共混物及PLA/EGMA/碳纳米管(CNTs)复合材料,并对复合材料的熔体流变行为、结晶行为和拉伸性能进行了表征。流变测试结果表明,EGMA和CNTs的加入均可提高PLA的储能模量及熔体强度。DSC测试结果表明,EGMA的添加会使PLA的结晶受到抑制,CNTs则因其成核作用而有利于结晶。偏光显微镜(POM)测试结果表明,球晶径向生长速率随着EGMA及CNTs的添加而逐渐降低。拉伸性能分析结果表明,当PLA/EGMA=80/20时,复合材料的断裂伸长率随着CNTs含量的增加呈现先增大后减小的趋势,并在CNTs含量为2.0%时达到最大值26.7%。  相似文献   

4.
聚乳酸(PLA)用于产品包装时不仅要满足所必需的力学性能、化学稳定性、透明性、印刷性以及热封性等,还要满足产品对阻隔性的要求.采用共混、添加助剂的方法以提高PLA对水蒸气的阻隔作用.结果显示:乙烯-乙烯醇共聚物(EVOH)、有机蒙脱土(OMMT)的加入可以降低PLA的水蒸气透过率(WVTR),且随着其含量的增加,WVTR值逐渐减小,当EVOH质量含量达到50%时,WVTR值减小了61%,OMMT含量达到9%时,WVTR值减小了58%;在OMMT/PLA共混物中加入聚癸二酸丙三醇酯(PGS)后,WVTR值增加.  相似文献   

5.
采用熔融共混法制备聚丁二酸丁二酯(PBS)/聚乳酸(PLA)共混物,研究PLA含量对共混物的熔体流动速率(MFR)、拉伸性能、微观形貌以及结晶结构的影响。结果表明,由于PLA熔体的较高黏度,导致PBS/PLA共混物的MFR随着PLA含量增大而显著降低。适量PLA的加入可实现其对PBS的增强增韧,当PLA质量分数为30%时,共混物的拉伸屈服强度、拉伸弹性模量以及断裂伸长率分别由纯PBS的32.0,473.1 MPa和282.5%增大至34.4,610.8 MPa和455.2%,拉伸性能最优。而当PLA质量分数增大至40%时,共混物中出现严重的PLA相合并,导致其断裂伸长率剧烈降低至11.3%。此外,结晶测试结果表明,共混物中PBS基体为半结晶结构,而PLA分散相为非晶态结构,PLA的加入会导致PBS结晶度降低。  相似文献   

6.
将乙烯/甲基丙烯酸丁酯/甲基丙烯酸缩水甘油酯三元共聚物(GEBMA)和滑石粉(Talc)按不同比例加入聚乳酸(PLA)基体中,熔融共混制备PLA/GEBMA/Talc共混物。将GEBMA的质量分数固定为10%,探讨了不同含量的Talc对PLA/GEBMA/Talc共混物的力学性能、流变性能、热性能、相形态以及耐热性能的影响。结果表明:GEBMA的加入提高了PLA的韧性,冲击强度从纯PLA的4.3 kJ/m~2提高到PLA/GEBMA(90/10)的21.6 kJ/m~2。随着Talc含量的增加,PLA/GEBMA/Talc共混物的拉伸强度和冲击强度降低,弹性模量增加,PLA/GEBMA/Talc材料具有良好的力学性能。Talc起到了异相成核作用,可以提高结晶速率,减小PLA的晶体尺寸,改善了共混物的耐热性能。PLA/GEBMA/Talc材料可广泛用于可生物降解的注塑产品。  相似文献   

7.
以Joncryl ADR-4370F(ADR)为增容剂,超细滑石粉(Talc)为成核剂,聚乳酸(PLA)/聚对苯二甲酸-己二酸-丁二醇酯(PBAT)通过熔融共混,然后挤出吹膜。对PLA/PBAT薄膜的热性能、结晶行为、撕裂断面形态、力学性能和阻隔性能进行了研究。结果表明,PBAT的加入改善了PLA的柔韧性。随着PBAT含量(40%~70%)的增加,薄膜的拉伸强度和模量降低,断裂伸长率大幅增加了。薄膜的氧和水蒸气阻隔性能受PBAT影响不大。ADR的加入使得薄膜材料的相容性得到了提高。  相似文献   

8.
采用哈克密炼机制备了聚乳酸(PLA)与马来酸酐接枝苯乙烯-乙烯-丁二烯-苯乙烯嵌段共聚弹性体(SEBS-g-MAH)的共混物,并对共混物的力学性能、流变性能和微观结构进行了分析。结果表明,共混物的拉伸强度随着SEBS-g-MAH含量的增加而下降,断裂伸长率随着SEBS-g-MAH含量的增加而增大。当SEBS-g-MAH的含量为30 %时,共混物的冲击强度提高了2.5倍,共混物的韧性得到提高。随着SEBS-g-MAH含量的增加,PLA熔体黏度的变化趋势与SEBS-g-MAH越来越相似,即熔体黏度随着频率的增大而下降。扫描电镜分析表明,MAH基团改善了两相间的界面作用,增韧作用明显。  相似文献   

9.
利用熔融共混法制备了超高相对分子质量聚乙烯(UHMWPE),聚乳酸(PLA)共混体系,讨论了PLA含量对共混体系熔体流动性能、力学性能、结晶性能及吸水性能的影响.结果表明:随PLA含量的增加,UHMWPE/PLA共混体系的熔体流动性显著增强;体系收缩率下降,尺寸稳定性变好;屈服拉伸强度和缺口冲击强度下降,断裂由韧性断裂逐渐转变为脆性断裂;当w(PLA)为10%时,所制备的共混体系既能保证UHMWPE原有的缺口冲击强度和韧性断裂,又具有较好的熔体流动性能;PLA与UHMWPE共混可加快共混体系的结晶速率,使熔点下降;随着PLA含量的增加,共混体系的吸水率也随之增加.  相似文献   

10.
刘卓  陈英红  蒋芝 《塑料科技》2013,(11):69-73
将聚甲醛(POM)与聚乳酸(PLA)熔融共混,制备了PLA/POM复合材料。POM的引入明显改善了PLA的熔融加工性能,有利于PLA微成型加工。采用熔体流动速率仪、高压毛细管流变仪和动态流变仪研究了PLA、POM及PLA/POM共混物的流变行为。结果表明:随着POM含量的增加,PLA/POM共混物的熔体流动速率亦增加;PLA、POM和PLA/POM共混物熔体具有假塑性流动特征,是非牛顿流体。随POM含量的增加,PLA/POM共混体系的剪切黏度降低,且剪切敏感指数减小,非牛顿指数升高。PLA、POM及PLA/POM共混物都具有类黏弹性,其黏弹行为均以黏性为主。此外,相对PLA,POM的加入降低了PLA/POM共混体系的复数黏度、动态储能模量和动态损耗模量,但提高了力学损耗。  相似文献   

11.
《塑料科技》2017,(5):53-58
采用多元环氧扩链剂(ADR)对聚乳酸(PLA)进行熔融扩链改性,得到PLA/ADR共混物。采用差示扫描量热仪(DSC)对共混物的熔体等温结晶行为进行表征和分析。结果表明:在110~120℃温度范围内,ADR的加入提高了PLA熔体的结晶速率;随着ADR用量的增加,PLA等温结晶速率明显提高,半结晶时间缩短。结合熔体流动速率和偏光显微镜分析,从分子运动能力和熔体黏度的角度解释了ADR对PLA等温结晶行为的影响机理。此外,研究了结晶度变化对PLA/ADR共混物拉伸性能和维卡软化温度(VST)的影响。当PLA/ADR(100/1.0)共混物的结晶度由1.7%提高到32.2%时,其拉伸强度由55.6 MPa提高到63.2 MPa,VST由61.9℃提高到156.9℃。结晶度的增大有利于PLA/ADR共混物力学性能和耐热性能的进一步提高。  相似文献   

12.
针对聚乳酸(PLA)韧性差的特点,采用有机硅改性热塑性聚氨酯(TPSiU)对PLA通过熔融共混进行增韧改性,考察了TPSiU含量对PLA/TPSiU共混物微观结构、热性能及力学性能等的影响。研究结果表明,TPSiU的加入,使PLA由脆性材料转变为韧性材料,共混物的拉伸强度、弹性模量,冲击强度均随TPSiU含量的增加呈先增大后减小的趋势,当TPSiU的质量分数为20%时,PLA/TPSiU共混物的断裂伸长率提高约8倍。PLA/TPSiU共混物中两相呈海-岛结构,相容性欠佳,而且随着TPSiU含量的增加,"岛"相尺寸逐渐增大。另外,TPSiU的加入对PLA的热性能稍有影响,当TPSiU质量分数为10%时,共混体系的耐热性与纯PLA相当。  相似文献   

13.
采用熔融共混法制备了聚乳酸/聚(3-羟基丁酸-co-3-羟基戊酸酯)(PLA/PHBV)共混物,研究了PLA/PHBV质量比以及滑石粉(Talc)含量对PLA/PHBV共混物性能的影响。结果表明,随着PHBV含量的增加,PLA/PHBV的结晶度先降低后升高,断裂伸长率提高了21.81%,冲击强度提高了35.9%,拉伸强度下降;随着Talc含量的增加,PLA/PHBV/Talc的结晶度增大,冲击强度提高了12.4%,但是断裂伸长率和拉伸强度有所下降;在不显著降低拉伸强度和弯曲强度的前提下,PHBV的含量为20%(质量分数,下同)且Talc含量为1.5%时,复合材料的力学性能最优。  相似文献   

14.
采用马来酸酐接枝聚丙烯(MAH-g-PP)作为相容剂,制备了聚乳酸(PLA)/聚丙烯(PP)共混物体系并研究了其发泡行为。采用差式扫描量热仪和旋转流变仪分别研究其热行为和流变行为,采用扫描电镜观察了共混体系的冲击断面形貌及泡孔形态。结果表明,随着MAH-g-PP添加量的增加,共混体系的相容性得到提高,加入PP促进了PLA的结晶,当MAH-g-PP含量达到7%时,PLA的绝对结晶度达到6.07%,同时加入PP提高了PLA/PP共混体系的熔体强度,使其发泡行为得到改善,共混体系的发泡倍率最大可以达到8.1倍。  相似文献   

15.
利用熔融成型法制得不同聚乳酸(PLA)质量分数的低密度聚乙烯/聚乳酸(PE–LD/PLA)共混物,并对PE–LD/PLA共混物的结构和性能进行研究。结果表明,共混物中PLA相与PE–LD相之间没有发生化学反应,它是PLA与PE–LD的一种简单混合物。共混物中的PLA含量对其力学性能和亲水性均有很大影响。随着PLA含量的增加,共混物的断裂伸长率逐渐降低而拉伸强度和拉伸弹性模量逐渐增大,共混物的亲水性增加,且随着降解时间的增加,共混物的断裂伸长率轻微增加而拉伸强度和拉伸弹性模量小幅度降低,这些现象均与PLA是一种强度高但柔韧性较差的亲水性高分子材料有关。  相似文献   

16.
采用天然可降解糯米粉作为填料、以聚乙二醇(PEG)作为增塑剂,制备了聚乳酸/糯米粉共混物,并研究了糯米粉及PEG含量对共混物力学性能、微观形态和吸水率的影响。结果表明,糯米粉的加入提高了PLA的吸水率,却降低了其力学性能;随着PEG含量的增加,共混物的冲击强度先增大后减小, 当PEG含量为12 % (质量分数,下同)时,共混物冲击强度达到22.8 kJ/m2,较纯PLA提高了近4倍,共混物的吸水率也明显提高;随着PEG含量的增加,糯米粉与PLA间的相容性提高。  相似文献   

17.
采用溶液浇铸法制备了聚碳酸亚丙酯(PPC)/聚乳酸(PLA)共混物,通过力学性能测试、衰减全反射红外光谱分析、差示扫描量热分析和热失重分析研究了共混物的性能,并对共混物进行了热分解动力学研究。结果表明,随着PLA含量的增加,共混物的拉伸强度增大,断裂伸长率减小,PPC/PLA共混物的力学性能得到改善;随着PLA的含量从10%(质量分数,下同)增加到90%,共混物热失重10%所对应的温度(T-10%)从255℃逐渐增加到281℃,当PLA的含量分别为10%、50%和90%时,最大速率失重温度比纯PPC分别提高了3.45、15.51和41.58℃;采用Coats-Redfern法得出,PLA的加入能提高PPC的活化能,其中PLA含量为30%和50%时,共混物的活化能比纯PPC分别提高了12.72%和40.68%,说明PLA改善了PPC的热稳定性。  相似文献   

18.
研究了聚乳酸(PLA)与高分子弹性体共混体系的微观结构、力学性能和结晶性能。结果表明,PLA/弹性体共混体系亚微观不相容;弹性体含量为40 %(质量分数,下同)时与PLA的相容性较好;加入弹性体后,PLA在升温过程中,当温度到达110 ℃时发生了诱导结晶;随着弹性体含量的增加,PLA/弹性体共混体系的塑化时间减小,熔体流动速率增加,断裂伸长率大大增加但同时拉伸强度下降。  相似文献   

19.
通过熔融共混法制备聚乳酸/聚丁二酸丁二醇酯(PLA/PBS)共混体系和PLA/PBS/反应型增容剂(Cp)共混体系,并通过间歇式釜压发泡成型制得泡沫样品,研究了PLA/PBS共混体系和PLA/PBS/Cp共混体系的结晶行为、相态结构、流变行为和发泡行为。结果表明,PBS的加入对PLA降温结晶的影响不大,其熔体弹性有所提升,且PBS含量的变化对共混体系泡孔形态的影响较小;在PLA/PBS/Cp共混体系中,Cp的加入对共混体系中PLA的结晶性能有明显的提高;另外随着Cp含量的增加,其熔体弹性也显著增加;Cp可以有效地提高PLA与PBS间的相容性,改善泡孔的形态。  相似文献   

20.
采用熔融共混法在同向旋转双螺杆挤出机上制备了不同配比的聚乳酸/己二酸-对苯二甲酸-丁二酯共聚物(PLA/PBAT)共混物、PLA/PBAT/扩链剂(ADR)共混物和不同工艺条件时(不同螺杆转速、不同温度)的PLA/PBAT共混物;通过扫描电子显微镜考察了共混物的形态结构,并对其冲击性能进行了测试。结果表明,在PLA/PBAT配比为85/15时共混物呈现出韧性断面,同时冲击强度也明显增加,说明PBAT的加入大大改善了PLA的脆性;扩链剂ADR的加入,进一步改善了共混物的韧性,在ADR用量为0.6%时,冲击强度提高了320%;随着螺杆转速的增加,PLA/PBAT(85/15)共混物的韧性提高,在螺杆转速为80r/min时冲击强度达到最大值11.25kJ/m2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号