首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, ternary‐phase polypropylene (PP) composites containing an ethylene–octene copolymer (EOR) and calcium carbonate (CaCO3) were investigated. Particular consideration was given to the influence of stearic acid treatment of the filler on the phase morphology and mechanical properties of the composites. In composites containing an uncoated filler, a separate dispersion of the elastomer and filler particles in the PP matrix was observed. The use of filler treated with stearic acid had no effect either on the dispersion or the interaction of the filler and the polymer components. However, the surface‐treated filler was found to promote the β‐hexagonal crystallization of PP and gave a composite with lower Tc onset and Tc values. As a consequence, differences in mechanical properties, in particular, impact strength, were exhibited in which calcium carbonate with stearic acid treatment was apparently more effective in increasing the impact strength of the composites in comparison with the composites containing the uncoated filler. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 3445–3454, 1999  相似文献   

2.
The present study was aimed to see the effect of surface treatment on nanocomposites with different fatty acids (stearic acid and oleic acid) having two different coupling agents (titanate and silane). Nanocomposites were prepared via melt mixing in Haake 90 twin screw extruder. The characterization of nanocomposites had been carried out using various advance analytical techniques such as dynamic mechanical analysis, thermogravimetric analysis, heat distortion temperature, melt flow index, and scanning electron microscopy. The strength and stiffness were also improved with the incorporation of maleic‐anhydride grafted ethylene propylene rubber in PP/Nano‐CaCO3 nanocomposites. The tensile, flexural, and impact strength properties of PP/MA‐g‐EPR/treated‐CaCO3 and untreated nanocomposites were determined. These studies revealed that stearic acid treated nanofiller filled composites had better properties than those of untreated and oleic acid treated nanofiller filled composites. The SEM studies demonstrated that the dispersion and distribution of Nano‐CaCO3 (nCaCO3) particles within the polypropylene matrix were dependent on the nature of surface treating agents. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
Commercial stearic acid treated calcium carbonate (CaCO3) was used to make a comparative study on rheological behavior of the CaCO3 and talc‐filled polypropylene (PP) hybrid composites with nontreated filler. Apparent shear viscosity and extrudate swell were investigated with variation of filler ratio and temperature with 30% by weight total of filler was used in PP composite. The Shimadzu capillary rheometer was used to evaluate shear viscosity and shear rate of the composite. It was found that the shear viscosities decrease with increasing shear rate. The apparent shear viscosity of the composite containing the stearic acid treated is slightly lower than untreated filler. Shear thickening behavior at higher shear rate has also shown by 15/15 treated composites at higher temperature about 220°C and investigation by SEM has proved that filler being densely packed at that condition. Treated composites also exhibit lower swelling ratio value than untreated composite, and swelling ratio also decreases linearly with increasing temperature and the die length–diameter ratio. It is believed that dispersion of filler play an important role not only on shear viscosity but also on swelling ratio of PP composite. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5421–5426, 2006  相似文献   

4.
Because of the poor impact behavior of polypropylene (PP) at low temperatures, the blending of PP with metallocene‐polymerized polyethylene (mPE) elastomers was investigated in this study. However, a reduced modulus of the overall blend was inevitable because of the addition to elastomers. To obtain a balance of the properties, we introduced rigid inorganic fillers to PP/mPE blends. The performance of the composites was characterized with tensile and Charpy notched impact tests, and the fracture morphology was examined with scanning electron microscopy. The results showed that the effects of fillers in a brittle matrix and in a ductile matrix were quantitatively different. For PP/mPE/filler ternary composites, the dependence of Young's modulus and yield strength on CaCO3 content was not significant compared with that of PP/filler binary composites, whereas the elongation at break and tensile toughness at room temperature for PP/mPE/filler systems were more improved. The impact strength of the PP/mPE blends filled with untreated glass beads and CaCO3 at a low temperature was lowered because of the weak interfacial bond. However, the values of the impact strength of the PP/mPE/filler composites at a low temperature remained at a high level compared with that of pure PP. In particular, a PP/mPE blend filled with surface‐treated kaolin had a higher low‐temperature impact toughness than the unfilled blend. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 3029–3035, 2002; DOI 10.1002/app.2333  相似文献   

5.
Some results of experiments on the mechanical and rheological properties of mineral filled polypropylene were presented. Single filler and hybrid filler composites of talc and calcium carbonate (CaCO3) were prepared in a co‐rotating twin‐screw extruder. The effect of filler type, filler content, and coupling agent on the mechanical and rheological properties of the polypropylene were studied. The coupling agent was maleic anhydride‐grafted polypropylene (PP‐g‐MA). It was found that the mechanical properties are affected by filler type, filler concentration, and the interaction between filler and matrix. The tensile strength of the composite is more affected by the talc while the impact strength is influenced mostly by CaCO3 content. The elongation at break of PP/CaCO3 composites was higher than that of PP/talc composites. The incorporation of coupling agent into PP/mineral filler composites increased the mechanical properties. Rheological properties indicated that the complex viscosity and storage modulus of talc filled samples were higher than those of calcium carbonate filled samples while the tan δ was lower. The rheological properties of hybrid‐filler filled sample were more affected by the talc than calcium carbonate. The PP‐g‐MA increased the complex viscosity and storage modulus of both single and hybrid composites. POLYM. COMPOS., 2009. © 2009 Society of Plastics Engineers  相似文献   

6.
This study was carried out to investigate the influences of compounding process and surface treatment on calcium carbonate (CaCO3) filled polypropylene. The compounding process is discussed with reference to a twin-screw extruder and an internal mixer. The calcium carbonate filler was surface-treated with a liquid titanate coupling agent (LICA 12) and stearic acid. Composites of different weight fractions were prepared by both compounding processes, and their impact properties were evaluated. The notched Izod impact strength increased with CaCO3 content up to a maximum at about 10 vol%, and then decreased. Surface treatment of CaCO3 filler generally yielded composites of higher impact strength than untreated system. Though LICA 12 was more effective than stearic acid in modifying the filler, the low-cost stearic acid proved to be more effective when dealing with the impact properties of composites. Moreover, the composites from a Brabender Plasti-corder exhibited better gross uniformity than that from the twin-screw extruder. However, good filler dispersion and uniform microscopic morphology, as revealed by SEM microscopy, was observed in the samples from the twin-screw extruder. Polym. Compos. 25:451–460, 2004. © 2004 Society of Plastics Engineers.  相似文献   

7.
Influence of filler size on impact properties for polypropylene (PP)/elastomer/filler ternary composites was investigated. Calcium carbonate (CaCO3) particles with a diameter in the range from 120 to 1200 nm were used as a filler and polystyrene-block-poly(ethylene-butene)-block-polystyrene triblock copolymer (SEBS) was used as an elastomer. In the PP/SEBS/CaCO3 ternary composite, CaCO3 particles and SEBS particles were dispersed in the PP matrix separately. In the case that SEBS elastomer volume fraction was below 0.12, the impact strength improved gradually with a decrease of CaCO3 mean diameter from 1200 to 160 nm. In the case that SEBS volume fraction was above 0.17, the impact strength improved significantly by the incorporation of CaCO3 particles with a mean diameter in the range from 120 to 900 nm. However, the impact strength hardly improved by the incorporation of CaCO3 particles with a mean diameter of 1200 nm.  相似文献   

8.
This article reports the mechanical, thermal, and morphological properties of polypropylene (PP)‐chicken eggshell (ES) composites. Mechanical properties like tensile strength, tensile modulus, izod impact strength, flexural modulus of PP composites with normal (unmodified) eggshell and chemically treated ES [modified ES (MES) with isophthalic acid] have been investigated. PP–calcium carbonate (CaCO3) composites, at the same filler loadings, were also prepared and used as reference. The results showed that PP composites with chemically MES had better mechanical properties compared to the unmodified ES and CaCO3 composites. An increase of about 3–18% in tensile modulus, 4–44% in izod impact strength and 1.5–26% in flexural modulus at different filler loading was observed in MES composites as compared to unmodified ES composites. Scanning electron microscopy (SEM) micrographs of fractured tensile specimens confirmed better interfacial adhesion of MES with polymer matrix resulting into lower voids and plastic deformation resulting in improved mechanicals of the composites. TEM micrographs showed acicular needle shaped morphology for modified ES and have contributed to better dispersion which is the prime reason for enhancement of all the mechanical properties. At higher filler loading, the modulus of MES composite was found to be higher by 5% as compared to commercial CaCO3 composites. POLYM. COMPOS., 35:708–714, 2014. © 2013 Society of Plastics Engineers  相似文献   

9.
The influence of untreated and stearic acid surface pretreated calcium carbonate (CaCO3) nanofiller (U1 – untreated CaCO3 and U1S2 – stearic acid treated CaCO3) on the properties of polyurethane/poly(vinyl acetate) (PUR/PVAC) polymer blends was investigated. Adhesion between fillers and polymers in the polymer blend composite, and filler position in regard to the polymer phases, are predicted on the basis of calculated adhesion parameters and wetting factor ωa of PUR, PVAC, U1, and U1S2. U1 is located in the PUR matrix phase and U1S2 is located at the interface between matrix PUR domain and dispersed PVAC domain. Polymer blend composites with predominant U1S2 showed lower tensile strength and elongation compared to these of polymer blend composites with predominant U1 mainly due to the fillers' different surface properties, which confirmed that the mechanical properties of polymer blend composites were dependent on overall system morphology rather than the filler location. POLYM. COMPOS. 37:1274–1281, 2016. © 2014 Society of Plastics Engineers  相似文献   

10.
Nano‐CaCO3/polypropylene (PP) composites modified with polypropylene grafted with acrylic acid (PP‐g‐AA) or acrylic acid with and without dicumyl peroxide (DCP) were prepared by a twin‐screw extruder. The crystallization and melting behavior of PP in the composites were investigated by DSC. The experimental results showed that the crystallization temperature of PP in the composites increased with increasing nano‐CaCO3 content. Addition of PP‐g‐AA further increased the crystallization temperatures of PP in the composites. It is suggested that PP‐g‐AA could improve the nucleation effect of nano‐CaCO3. However, the improvement in the nucleation effect of nano‐CaCO3 would be saturated when the PP‐g‐AA content of 5 phf (parts per hundred based on weight of filler) was used. The increase in the crystallization temperature of PP was observed by adding AA into the composites and the crystallization temperature of the composites increased with increasing AA content. It is suggested that the AA reacted with nano‐CaCO3 and the formation of Ca(AA)2 promoted the nucleation of PP. In the presence of DCP, the increment of the AA content had no significant influence on the crystallization temperature of PP in the composites. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2443–2453, 2004  相似文献   

11.
This study discusses the potential of utilizing waste cockleshell derived-CaCO3 (CS) as filler in polypropylene (PP). Mineral fillers were prepared from cockleshell-derived CaCO3 and used to fill polypropylene. The composites were prepared by melt blending and fabricated by injection and compression molding techniques. The effects of filler on crystal structure, crystallization and thermal degradation characteristics of filled polypropylene composites were elucidated. The cockleshell filler promoted the formation of the β-crystalline phase in PP, which improved the rigidity and toughness of the composites. However, stearic acid treatments on the filler would significantly affect the nucleation process and therefore hindered crystallization. Acceleration in thermal degradation of PP was also noted with increasing filler loading.  相似文献   

12.
Acrylonitrile‐butadiene‐styrene (ABS)/poly(methyl meth‐acrylate) (PMMA)/nano‐calcium carbonate (nano‐CaCO3) composites were prepared in a corotating twin screw extruder. Four kinds of nano‐CaCO3 particles with different diameters and surface treatment were used in this study. The properties of the composites were analyzed by tensile tests, Izod impact tests, melt flow index (MFI) tests, and field emission scanning electron microscopy (FESEM). This article is focused on the effect of nano‐CaCO3 particles' size and surface treatment on various properties of ABS/PMMA/nano‐CaCO3 composites. The results show that the MFI of all the composites reaches a maximum value when the content of nano‐CaCO3 is 4 wt%. In comparison with untreated nano‐CaCO3 composites, the MFI of stearic acid treated nano‐CaCO3 composites is higher and more sensitive to temperature. The tensile yield strength decreases slightly with the increase of nano‐CaCO3 content. However, the size and surface treatment of nano‐CaCO3 particles have little influence on the tensile yield strength of composites. In contrast, all of nano‐CaCO3 particles decrease Izod impact strength significantly. Stearic acid treated nano‐CaCO3 composites have superior Izod impact strength to untreated nano‐CaCO3 composites with the same nano‐CaCO3 content. Furthermore, the Izod impact strength of 100 nm nano‐CaCO3 composites is higher than that of 25 nm nano‐CaCO3 composites. POLYM. COMPOS., 31:1593–1602, 2010. © 2009 Society of Plastics Engineers  相似文献   

13.
Three types of mineral fillers—talc, calcium carbonate (CaCO3), and kaolin (10–40 wt % filler loadings)—were compounded with polypropylene (PP) with a twin‐screw extruder. The composites were injection‐molded, and the effects of the filler loading on the mechanical, flow, and thermal properties for the three different types of filled composites were investigated. The aim was to compare their properties and to deduce prospective filler combinations that would yield hybrid PP composites in following studies. The results showed that in most cases, the strength and stiffness of the talc‐filled PP composites was significantly higher than those of the CaCO3‐ and kaolin‐filled PP composites. However, CaCO3, being a nonreactive filler, increased the toughness of PP. The kaolin‐filled PP composites also showed some improvement in terms of strength and stiffness, although the increases in these properties were not as significant as those of the talc‐filled PP composites. The effects of interfacial interactions between the fillers and PP on the mechanical properties were also evaluated with semiempirical equations. The nucleating ability of all three fillers was studied with differential scanning calorimetry, and the strongest nucleating agent of the three was talc, followed by CaCO3 and kaolin. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3315–3326, 2004  相似文献   

14.
The main aim of this work was to study and compare the mechanical and thermal properties of hybrid polypropylene (PP) composites and single‐filler PP composites. With two main types of mineral fillers—calcium carbonate (CaCO3) and talc—PP composites of different filler weight ratios (talc/CaCO3) were compounded with a twin‐screw extruder and then injection‐molded into dumbbell specimens with an injection‐molding machine. Tensile, flexural, and impact tests were performed to determine and compare the mechanical properties of the hybrid and single‐filler PP composites. A synergistic hybridization effect was successfully achieved; the flexural strength and impact strength were highest among the hybrids when the PP/talc/CaCO3 weight ratio was 70:15:15. The nucleating ability of the fillers and its effects on the mechanical properties were also studied with differential scanning calorimetry. Because of the influence of talc as the main nucleating agent, the hybrid fillers showed significant improvements in terms of the nucleating ability, and this contributed to the increase in or retention of the mechanical properties of the hybrid composites. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3327–3336, 2004  相似文献   

15.
β-crystalline phase polypropylene (PP) composites containing 5, 10, 20, 30, and 40% (by weight) of CaCO3 filler were prepared by injection molding. The β-form PP was produced by adding a bicomponent β-nucleator consisting of equal amounts of pimelic acid and calcium stearate. The morphology, static tensile, and impact properties of these composites were investigated in this study. Scanning electron microscopy (SEM) observations revealed that the β-spherulites of the polymer matrix of the composites exhibit curved lamellae and sheaf-like structures. The fillers were observed to disperse within the inter-lamellar spacings of the β-PP composite containing 10% calcium carbonate addition. However, the filler particles tend to link together to form larger aggregates when the filler content reaches 20%. Static tensile measurements showed that the elastic modulus of the composites increases with increasing filler content but the yield strength decreases with increasing filler addition. The falling weight Charpy impact test indicated that the β-PP polymer exhibits the highest critical strain energy release rate (Gc) value. However, there was a drastic drop in Gc of the β-PP composites with increasing filler content. The results are discussed and explained in terms of materials morphology.  相似文献   

16.
β‐Polypropylene composites containing calcium carbonate treated by titanate coupling agent (T‐CaCO3) and maleic anhydride grafted PP (PP‐g‐MAH) were prepared by melt compounding. The crystallization, morphology and mechanical properties of the composites were investigated by means of differential scanning calorimetry, wide‐angle X‐ray diffraction, polarized light microscopy, scanning electron microscopy and mechanical tests. It is found that both T‐CaCO3 and NT‐C are able to induce the formation of β‐phase, and NT‐C greatly increases the β content and decreases the spherulitic size of PP. PP‐g‐MAH facilitates the formation of β‐form PP and improves the compatibility between T‐CaCO3 and PP. Izod notched impact strength of β‐PP/T‐CaCO3 composite is higher than that of PP/T‐CaCO3 composite, indicating the synergistic toughening effect of T‐CaCO3 and β‐PP. Incorporation of PP‐g‐MAH into β‐PP/T‐CaCO3 composite further increases the content of β‐crystal PP and improves the impact strength and tensile strength when T‐CaCO3 concentration is below 5 wt%. The nonisothermal crystallization kinetics of β‐PP composites is well described by Jeziorny's and Mo's methods. It is found that NT‐C and T‐CaCO3 accelerate the crystallization rate of PP but the influence of PP‐g‐MAH on crystallization rate of β‐PP composite is marginal. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

17.
Three types of polypropylene (PP) with different intrinsic toughness were used to study the mechanical properties and morphologies of the PP composites filled with single‐filler and hybrid‐filler of calcium carbonate particles. The calcium carbonate particles used were with average particle sizes of 25 μm (CC25), and 0.07 μm (CC0.07), respectively. A hybrid‐filler CaCO3 named CC25/CC0.07 was used as a mixture of CC25 and CC0.07 (CC25/CC0.07 weight ratio = 1:1). It was found that the type of PP and the particle size of inorganic filler were the two important factors for the determination of mechanical properties of the composites. And the general mechanical properties of the composites filled with hybrid‐filler CaCO3 were better than those of the composites filled with single‐filler CaCO3, but the synergistic hybridization effect of the hybrid‐filler CaCO3 did not exist. The major toughening mechanism of the PP/CC25 composites was the cavitation of the matrix caused by CC25, and the major toughening mechanism of the PP/CC0.07 composites was the pinning effect introduced by CC0.07. For the PP/CC25/CC0.07 composites, the cavitation of the matrix caused by CC25 and the pinning effect introduced by CC0.07 existed simultaneously. And when the intrinsic toughness of the matrix was large enough, the major factor to toughen PP was the pinning effect introduced by CC0.07, otherwise the major factor to toughen PP was the cavitation of the matrix caused by CC25. POLYM. ENG. SCI., 47:95–102, 2007. © 2007 Society of Plastics Engineers  相似文献   

18.
A novel comb-like copolymer with carboxyl group as an anchoring group and polycaprolactone as a solvent chain was first used as the dispersant of CaCO3 particles in polypropylene (PP). The dispersion of CaCO3 particles in PP matrix was significantly improved in the presence of comb-like copolymer dispersant because of the strong repulsive force caused by steric hindrance effect. The influences of the coating amount of comb-like copolymer dispersant on crystallization behaviors, mechanical properties, and thermal stabilities were systematically investigated. The crystallization temperature, crystallinity, and crystallization rate of PP/CaCO3 composites prepared with monolayer-coated CaCO3 were all improved, where the monolayer comb-like copolymer coating remained as a rigid layer and provided a noticeable nucleating effect. The PP/CaCO3 composites coated with monolayer SP comb-like copolymer also had the best mechanical properties, including tensile strength, Young’s modulus, flexural modulus, and impact strength because of the good dispersion of CaCO3 particles in PP matrix. The thermal stability of PP/CaCO3 composites were measured by thermogravimetric analysis. The results showed that SP comb-like copolymer dispersant treated CaCO3 filled composites had excellent thermal stability than untreated and neat PP, especially for the composite prepared with monolayer-coated CaCO3.  相似文献   

19.
Ternary composites of polypropylene (PP), elastomer, and calcium carbonate (CaCO3) filler were prepared to study their structure/property relationships. Two kinds of phase structure were formed, depending on the elastomer present in the composites. Separation of elastomer and filler particles was found when a nonpolar ethylene–octene copolymer was used. Encapsulation of filler by the elastomer was achieved by using a polar ethylene–vinyl acetate elastomer. The mechanical properties of ternary composites were strongly dependent on material composition and their phase structures. In the present study, composites with separate dispersion structure showed higher modulus and impact strength than those of encapsulation type. The deformation mechanisms of both composites were studied using scanning electron microscopy. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1929–1939, 2000  相似文献   

20.
The effect of successive injection moldings on the thermal, rheological, and mechanical properties of a polypropylene impact copolymer (PP) was investigated. The crystal content decreased as the molecular weight decreased due to chain scission with repeated injection molding. The Young modulus and the yield stress remained constant, despite a drop in the strain to break. Virgin and recycled PP matrix were filled with nanosized calcium carbonate (CaCO3) particles. The effect of morphology on the thermal and mechanical properties of nanocomposites of virgin and recycled PP filled with nanosized CaCO3 particles was also studied. The mechanical properties of the nanocomposites were strongly influenced by the intrinsic toughness of the matrix and the concentration and dispersion of the filler. The yield strength and strain of virgin PP decreased gradually, while its Young's modulus increased slightly with increasing CaCO3 loading. These phenomena were less pronounced for the recycled matrix. Incorporation of nanoparticles to virgin matrix produced an increase in tensile stiffness and ductility, when good dispersion of the filler was achieved. However, the impact strength dropped dramatically for high filler contents. A significant increase in impact strength was observed for the recycled PP. POLYM. ENG. SCI., 50:1904–1913, 2010. © 2010 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号