首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 842 毫秒
1.
In this work, electrical conductivity and thermo‐mechanical properties have been measured for carbon nanotube reinforced epoxy matrix composites. These nanocomposites consisted of two types of nanofillers, single walled carbon nanotubes (SW‐CNT) and electrical grade carbon nanotubes (XD‐CNT). The influence of the type of nanotubes and their corresponding loading weight fraction on the microstructure and the resulting electrical and mechanical properties of the nanocomposites have been investigated. The electrical conductivity of the nanocomposites showed a significantly high, about seven orders of magnitude, improvement at very low loading weight fractions of nanotubes in both types of nanocomposites. The percolation threshold in nanocomposites with SW‐CNT fillers was found to be around 0.015 wt % and that with XD‐CNT fillers around 0.0225 wt %. Transmission optical microscopy of the nanocomposites revealed some differences in the microstructure of the two types of nanocomposites which can be related to the variation in the percolation thresholds of these nanocomposites. The mechanical properties (storage modulus and loss modulus) and the glass transition temperature have not been compromised with the addition of fillers compared with significant enhancement of electrical properties. The main significance of these results is that XD‐CNTs can be used as a cost effective nanofiller for electrical applications of epoxy based nanocomposites at a fraction of SW‐CNT cost. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
In this study, a method for making an orientated polymer nanocomposite film was developed. Melt‐drawn nanocomposite monofilaments of isotactic polypropylene and acicular nanofillers, i.e. carbon nanotubes (CNT) or vapor grown carbon nanofibers (VGCF), were prepared and characterized from the aspect of polymer chain orientation, mechanical properties, and overall morphology. A marked improvement in mechanical properties was observed as a function of the addition of CNT, increasing draw down ratio (DDR) and annealing. Nanocomposite films were prepared from drawn monofilaments by hot‐pressing under low pressure in order to maintain the orientation of the monofilaments. Wide angle X‐ray diffraction showed a high degree of residual orientation in the films. Electron microscopy (high‐resolution scanning electron microscopy, transmission electron microscopy) unexpectedly revealed that the CNT‐matrix interface is amorphous. However, differential scanning calorimetry found no measurable influence of the CNT on the overall crystallinity as determined by the enthalpy of melting of the matrix. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

3.
The crystallization and melting behavior of neat nylon‐6 (PA6) and multi‐walled carbon nanotubes (MWNTs)/PA6 composites prepared by simple melt‐compounding was comparatively studied. Differential scanning calorimetry (DSC) results show two crystallization exotherms (TCC, 1 and TCC, 2) for PA6/MWNTs composites instead of a single exotherm (TCC, 1) for the neat matrix. The formation of the higher‐temperature exotherm TCC, 2 is closely related to the addition of MWNTs. X‐ray diffraction (XRD) results indicate that only the α‐phase crystalline structure is formed upon incorporating MWNTs into PA6 matrix, independently of the cooling rate and annealing conditions. These observations are significantly different from those for PA6 matrix, where the increase in cooling rate or decrease in annealing temperature results in the crystal transformation from α‐phase to γ‐phase. The crystallization behavior of PA6/MWNTs composites is also significantly different from those reported in PA6/nanoclay systems, probably due to the difference in nanofiller geometry between one‐dimensional MWNTs and two‐dimensional nanoclay platelets. The nucleation sites provided by carbon nanotubes seem to be favorable to the formation of thermodynamically stable α‐phase crystals of PA6. The dominant α‐phase crystals in PA6/MWNTs composites may play an important role in the remarkable enhancement of mechanical properties. Copyright © 2005 Society of Chemical Industry  相似文献   

4.
Nanostructured thermosetting composites based on an epoxy matrix modified with poly(isoprene‐b‐methyl methacrylate) (PI‐b‐PMMA) block copolymer were prepared through PI block segregation. Morphological structures were examined by means of atomic microscopy force microscopy. As epoxy/pristine multi‐walled carbon nanotubes (MWCNT) systems were found to present big agglomerations, with a very poor dispersion of the nanofiller, epoxy/PI‐b‐PMMA/MWCNT systems were prepared by using polyisoprene‐grafted carbon nanotubes (PI‐g‐CNT) to enhance compatibility with the matrix and improve dispersion. It was found that the functionalization of MWCNT with grafted polyisoprene was not enough to totally disperse them into the epoxy matrix but an improvement of the dispersion of carbon nanotubes was achieved by nanostructuring epoxy matrix with PI‐b‐PMMA when compared with epoxy/MWCNT composites without nanostructuring. Nevertheless, some agglomerates were still present and the complete dispersion or confinement of nanotubes into desired domains was not achieved. Thermomechanical properties slightly increase with PI‐g‐CNT content for nanostructured samples, whereas for nonnanostructured epoxy/PI‐g‐CNT composites they appeared almost constant and even decreased for the highest nanofiller amount due to the presence of agglomerates. Compression properties slightly decreased with block copolymer content, while remained almost constant with nanofiller amount. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
The effect of multiwalled carbon nanotubes (MWCNTs) modified by a hydrophilic ionic liquids (ILs), including 1‐ethyl‐3‐methylimidazolium bromide and 1‐hexyl‐3‐methylimidazolium bromide, was studied. The obtained water‐suspensible carbon nanotubes (CNTs) were still homogeneously distributed in water a month after sonication. The microstructural development of filler networks and the uniform dispersion of MWCNTs in the presence of IL were analyzed by TEM. The apparent physical (cation–π/π–π) interaction between the MWCNTs and the IL was characterized by Raman spectroscopy, DSC, and TGA. Furthermore, high‐performance composites of natural rubber latex (NRL) and CNTs modified with IL were obtained by the liquid latex blending method. The CNTs were homogeneously distributed in the matrix and CNT–ILs improved the fatigue resistance and mechanical properties of the NRL/CNT–IL composites. This study demonstrates a simple and eco‐friendly approach to develop multifunctional advanced materials based on IL‐modified MWCNT elastomer composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46588.  相似文献   

6.
This study features the effect of matrix viscosity on the properties of carbon nanotubes reinforced polyoxymethylene (POM/CNT) microparts, which were obtained via melt blending and subsequent microinjection molding (μIM) processes, under a defined set of processing conditions. Results of compression molding and μIM were compared to assess the influence of processing methods (i.e., thermomechanical history) on the electrical and thermal conductivities, melting and crystallization behavior as well as the thermal degradation resistance of POM/CNT composites. Filler orientation in POM/CNT microparts was evaluated using Raman spectral analysis. The electrical conductivity measurements revealed that matrix viscosity plays a significant role in determining the distribution of CNT. Also, the extreme shearing conditions that prevail in μIM are unfavorable for the construction of random conductive pathways within the micromoldings, as corroborated by transmission electron microscopy. Although the thermal degradation resistance of both POM/CNT composites and corresponding microparts deteriorated with increasing filler concentration, samples prepared with higher matrix viscosity showed higher thermal stability when compared with lower matrix viscosity counterparts. This study provides valuable insights into fabricating multifunctional microparts for potential industrial applications in replacement of metallic components for precision electronic instruments.  相似文献   

7.
Biodegradable composites consisting of aliphatic polyesters (poly[(butylenes succinate)‐co‐(butylenes adipate)] (PBSA)) and Bombyx mori silk fibers coated with carbon nanotubes (CNTs) were prepared by melt compression molding. The mechanical properties of PBSA were enhanced by the incorporation of a small amount (3 wt%) of CNT‐coated silk fibers, while allowing its potential biodegradability to be retained, which could make these composites good candidates for commodity materials such as general‐purpose plastics. This improvement is attributed to the interactions between PBSA and CNT‐coated silk fibers in the composites. The average interfacial shear strength of the composites consisting of CNT‐coated silk fibers and PBSA matrix was 1.7 MPa, as measured by the microbond droplet test, while that of composites consisting of pure silk fibers and PBSA was only 1.1 MPa. The morphology of the CNT‐coated silk fiber‐reinforced composites was observed using scanning electron microscopy. Copyright © 2007 Society of Chemical Industry  相似文献   

8.
Composites of Acrylonitrile‐butadiene‐styrene (ABS) and multiwall carbon nanotubes (MWNTs) have been prepared via solution‐blending. The electrical conductivity of these composites is analyzed. The MWNT‐filled ABS shows percolation point of the electrical conductivity at low filler loadings (1–2 wt%). The micro‐structure of the composites is also analyzed by scanning electron microscopy showing that the nanotubes are dispersed quite homogeneously in the polymer‐matrix. The thermogravimetric analysis is used to study the thermal degradation of ABS/MWNTs composites in nitrogen. MWNTs tend to destabilize the ABS matrix in the 220–450°C degradation regions but improve the thermal stability in the 425–850°C regions. With further addition of MWNTs, the features of the destabilization in the 220–450°C degradation region did not change much but in the 425–850°C degradation process, the MWNTs reinforced stabilization and the quality of the char residue of amorphous carbon deposition was improved. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

9.
The 1,6‐hexanediamine‐functionalized multi‐walled carbon nanotubes(a‐MWNTs)/polyimide(PI) nanocomposite films were prepared through in‐situ polymerization followed by mixture casting, evaporation, and thermal imidization. To increase the compatibility of carbon nanotubes with the matrix polyimide, a‐MWNTs was used as the filler. According to the results, a‐MWNTs were homogeneously dispersed in the nanocomposite films. With the incorporation of a‐MWNTs, the mechanical properties of the resultant films were improved due to the strong chemical bonding and interfacial interaction between a‐MWNTs and 4,4′‐oxydiphthalic anhydride(ODPA)/4,4′‐Oxydianiline(ODA) polyimide matrix. The thermal stability of the a‐MWNTs/polyimide nanocomposite was also improved by the addition of a‐MWNTs. The electrical tests showed a percolation threshold at about 0.85 vol% and the electrical properties were increased sharply. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

10.
The synthesized flame retardant 9,10‐dihydro‐9‐oxa‐10‐phosphaphanthrene‐10‐oxide/vinyl methyl dimethoxysilane (DV) was used to modify multiwalled carbon nanotubes (MWNTs). The results of FTIR, 1H‐NMR, and TGA measurements show that DV has been covalently grafted onto the surfaces of MWNTs, and the MWNTs‐g‐DV is obtained successfully. Transmission electron microscopy images show that a core‐shell nanostructure appears with MWNTs as the core and the DV thin layers as the shell, and the modified MWNTs with DV can achieve better dispersion than unmodified MWNTs in EVM matrix. Thermogravimetric analysis and cone calorimeter tests indicate that the thermal stability and flame retardant are improved for the presence of the MWNTs in EVM matrix. Moreover, the improvement is more evident for EVM/MWNTs‐g‐DV composite compared to unmodified MWNTs‐based composite, which can be attributed to the better dispersion of the DV‐modified MWNTs and to the chemical structure of the combustion residue. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
For the preparation of high‐quality polymeric carbon nanocomposites, it is required that carbon nanotubes are fully compatible with matrix polymers. For this purpose, amino‐functionalized multiple‐walled carbon nanotubes (a‐MWNTs) were synthesized. The a‐MWNTs/polyimide nanocomposite films were prepared through in situ polymerization. According to the spectroscopic characterizations, the a‐MWNTs were homogeneously dispersed in the nanocomposite films as the acid‐functionalized MWNTs. The mechanical properties of the polyimide composite were also studied. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Multiwalled carbon nanotubes (MWNTs)‐reinforced poly(hydroxyaminoether) (PHAE) was fabricated via one pot graft‐from method. The modification of MWNTs and in situ polymerization of PHAE were combined in one reaction pot without interruption for the purification of modified carbon nanotubes. Fourier transform infrared, scanning electron microscopy, transmission electron microscopy, and Raman spectra clearly indicated that PHAE was successfully attached to the surface of MWNTs via esterification reaction between epoxy and carboxylic acid from MWNTs. Tensile tests showed that the tensile strength and modulus of PHAE/MWNTs composites were improved compared with that of pristine PHAE. Moreover, the reinforcing effect of one pot graft‐from method was found to be better than that of graft‐to method. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Nanocomposites based on poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) and multi‐walled carbon nanotubes (MWNTs) were prepared by solution processing. Ultrasonic energy was used to uniformly disperse MWNTs in solutions and to incorporate them into composites. Microscopic observation reveals that polymer‐coated MWNTs dispersed homogenously in the PHBV matrix. The thermal properties and the crystallization behavior of the composites were characterized by thermogravimetric analysis, differential scanning calorimetry and wide‐angle X‐ray diffraction, the nucleant effect of MWNTs on the crystallization of PHBV was confirmed, and carbon nanotubes were found to enhanced the thermal stability of PHBV in nitrogen. Copyright © 2004 Society of Chemical Industry  相似文献   

14.
The focus of this study is to investigate the state of dispersion of different treated multiwalled carbon nanotubes (MWNTs) in polyamide 6 (PA6). The MWNTs used in composites were grafted by 1,6‐hexamethylenediamine (HMD) via acid‐thionyl chloride to improve their compatibility with PA6 matrix. A microstructure transformation of MWNTs is found during the treatment process. Acidification makes the MWNTs compact and grafting HMD promotes the compact structure loose again. The MWNTs after different treatment were used to fabricate MWNTs/PA6 composites through melt blending. The dispersion of different MWNTs in PA6 was observed by a combination of scanning electron microscopy, optical microscopy, and transmission electron microscopy. The results show that the amino‐functionalized MWNTs are dispersed more homogeneously in PA6 than the purified MWNTs, and the poorest dispersion is achieved for acid treated MWNTs. It is indicated that the loose structure and functionalized surface of MWNTs benefit the dispersion of MWNTs in PA6. In addition, the amino‐functionalization of MWNTs improves the compatibility between the MWNTs and PA6, resulting in stronger interfacial adhesion. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

15.
Nylon 11 (PA11) nanocomposites with different loadings of multi‐walled carbon nanotubes (MWNTs) were prepared by melt compounding. Scanning electron microscopy images on the fracture surfaces of the composites showed a uniform dispersion of MWNTs throughout the matrix. The presence of the MWNTs significantly improved the thermal stability and enhanced the storage modulus (G′) of the polymer matrix. Melt rheology studies showed that, compared with neat PA11, the incorporation of MWNT into the matrix resulted in higher complex viscosities (|η*|), storage modulus (G′), loss modulus (G″), and lower loss factor (tanδ). PA11 and its nanocomposites containing less than 1 wt% MWNTs showed similar frequency dependencies and reached a Newtonian plateau at low frequencies. For the nanocomposite with 2 wt% MWNTs, the regional network was destroyed and the orientation of the MWNTs during shearing exhibited a very strong shear thinning effect. The complex viscosities (|η*|) of the nanocomposites are larger than that of neat PA11 and decreased with increasing the temperature. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

16.
Single‐crystalline hafnium carbide (HfC) nanotubes were synthesized by a one‐step catalyst‐assisted chemical vapor deposition (CVD) method. The typical nanotubes had uniform diameters of ~60 nm and wall thicknesses of ~15 nm and preferentially grew along [201]. From HRTEM/EELS analysis, the growth mechanism based on carbon nanotubes (CNT) tip growth and CNT‐templated reaction was proposed for explaining the formation of HfC nanotubes. According to the mechanism, CNTs were first formed by diffusion of C atoms on the surface of solid Ni catalyst particles. Then, gaseous Hf species reacted with C atoms from CNTs to form HfC nanotubes. During the entire growth process, Hf atoms did not participate in the catalytic reaction. Thus, this process was distinguished from the conventional vapor–liquid–solid process.  相似文献   

17.
In this study, styrene‐butadiene‐styrene tri‐block copolymer/multiwalled carbon nanotubes (SBS/MWNTs) were prepared by means of a solution blending method. To enhance the compatibility between SBS and MWNTs, the SBS grafted MWNTs (SBS‐g‐MWNTs) were used to replace MWNTs. The MWNTs were chemically hydroxylated by the dissolved KOH solution with ethanol as solvent and then reacted with 3‐Aminopropyltriethoxysilane (APTES) to functionalize them with amino groups (MWNT‐NH2). The SBS‐g‐MWNTs were finally obtained by the reaction of MWNT‐NH2 and maleic anhydride grafted SBS (MAH‐g‐SBS). The SBS‐g‐MWNTs were characterized by X‐ray photoelectron spectroscopy (XPS), Fourier transform‐infrared spectroscopy (FT‐IR), transmission electron microscopy (TEM), scanning electron microscope (SEM), and thermogravimetric analysis (TGA). The results showed that the SBS molecules were homogeneously bonded onto the surface of the MWNTs, leading to an improvement of the mechanical and electrical properties of SBS/SBS‐g‐MWNTs composites due to the excellent interfacial adhesion and dispersion of SBS‐g‐MWNTs in SBS. A series of continuous tests were carried out to explore the electrical‐mechanical properties of the SBS/SBS‐g‐MWNTs composites. We found out that, near the percolation threshold, the well‐dispersed SBS/SBS‐g‐MWNTs composites showed good piezoresistive characteristics and small mechanical destructions for the development of little deformation under vertical pressure. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42945.  相似文献   

18.
Chemical reactions under microwave irradiation can be very efficient, with a significant shortening of reaction time. Few studies have reported the use of microwaves to functionalize carbon nanotubes. In the work reported, a new method of formulating functionalized multi‐walled carbon nanotubes (MWNTs) was developed by covalent grafting of polyamide 6 (PA6) chains onto the carbon nanotubes assisted by microwave irradiation. PA6 chains were grafted onto acidified MWNTs through condensation reaction between the carboxylic groups of the MWNTs and the terminal amine groups of PA6 using microwave radiation heating. The functionalized carbon nanotubes (MWNT‐g‐PA6) were characterized systematically using infrared and Raman spectroscopy, transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). TEM showed that the surface of the MWNTs was covered with a layer of PA6. TGA results indicated that the MWNT‐g‐PA6 contained about 47 wt% of polymer. A novel, convenient and efficient functionalization approach is reported, involving covalently grafting PA6 chains onto MWNTs assisted by microwave irradiation. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
Ladderlike polysilsesquioxanes (LPSs) containing chloromethylphenyl groups were synthesized from (p‐chloromethyl)phenyltrimethoxysilane under basic conditions. Functionalized multiwalled carbon nanotubes (MWNT–COOH) were prepared by the acid treatment of pristine multiwalled carbon nanotubes (MWNTs). MWNT–COOH was reacted with LPS to prepare LPS‐grafted MWNTs via ester linkages. The functionalization of MWNTs with LPS significantly altered the surface roughness of the MWNTs; there was a significant increase in the diameter of the MWNTs. The LPS‐grafted MWNTs had a 10–20 nm thickness along the outer walls according to the functionalization of the MWNTs with LPS. An advantage of the hybrid LPS‐grafted MWNTs was shown as improved thermal behavior. The composition, thermal properties, and surface morphology of the LPS‐grafted MWNTs were studied by Fourier transform infrared spectroscopy, thermogravimetric analysis, energy‐dispersive spectroscopy, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
In order to improve the dispersion of carbon nanotubes (CNTs) in polyimide (PI) matrix and the interfacial interaction between CNTs and PI, 4,4′‐diaminodiphenyl ether (ODA)‐functionalized carbon nanotubes (CNTs‐ODA) were synthesized by oxidation and amidation reactions. The structures and morphologies of CNTs‐ODA were characterized using Fourier transform infrared spectrometer, transmission electron microscopy, and thermal gravimetric analysis. Then a series of polyimide/amino‐functionalized carbon nanotube (PI/CNT‐ODA) nanocomposites were prepared by in situ polymerization. CNTs‐ODA were homogeneously dispersed in PI matrix. The influence of CNT‐ODA content on mechanical properties of PI/CNT‐ODA nanocomposites was investigated. It was found that the mechanical properties of nanocomposites were enhanced with the increase in CNT‐ODA loading. When the content of CNTs‐ODA was 3 wt%, the tensile strength of PI/CNT‐ODA nanocomposites was up to 169.07 MPa (87.11% higher than that of neat PI). The modulus of PI/CNTs‐ODA was increased by 62.64%, while elongation at break was increased by 66.05%. The improvement of the mechanical properties of PI/CNT‐ODA nanocomposites were due to the strong chemical bond and interfacial interaction between CNTs‐ODA and PI matrix. POLYM. COMPOS., 35:1952–1959, 2014. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号