首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用熔融纺丝法制备高密度聚乙烯/埃洛石(HDPE/HNTs)复合纤维。研究纺丝过程中拉仲速率和HNTs对熔纺HDPE/HNTs复合纤维的结晶和取向行为的影响。结果表明:随着拉仲速率的升高,HDPE/HNTs复合纤维的结晶度和长周期减小,而随着HNTs的质量分数增加有所增大,分子链取向度逐渐增大,同时HNTs能够促进分子链的取向,片晶取向度逐渐增大,片晶扭曲程度逐渐降低,同时HNTs的加入能够限制片晶的扭曲。  相似文献   

2.
采用差示扫描量热(DSC)法分析了不同降温速率下高密度聚乙烯(HDPE)和连续玻纤(GF)增强HDPE复合材料的非等温结晶和熔融行为。使用莫志深法对HDPE和HDPE/GF复合材料的非等温结晶动力学进行研究,得出莫氏方程可以描述其非等温结晶动力学过程。并且采用偏光显微镜(POM)观察结晶形态。结果显示:降温速率越大,聚合物结晶峰越宽、聚合物开始结晶时的温度越低、结晶峰温度越低。GF起到异相成核的作用,使得HDPE/GF复合材料的成核速率高于纯HDPE,但由于纤维对晶体生长具有一定的阻碍作用,使其结晶焓较低。通过熔融曲线分析发现,降温速率和GF的加入对HDPE及HDPE/GF复合材料熔融温度和熔融峰温度的影响并不显著。采用莫志深法的研究结果与由动力学参数得出的结论相一致,HDPE/GF复合材料比HDPE更易结晶。POM等温结晶观察结果表明,HDPE/GF复合材料比HDPE的结晶速率更快,这与DSC和莫志深方程结果一致。  相似文献   

3.
采用聚对苯二甲酸丙二醇酯(PTT)和低温易染阳离子聚酯(ECDP)为原料,通过熔融纺丝制备了PTT/ECDP并列复合纤维,研究了牵伸倍数、热定形温度、热处理温度对复合纤维力学性能和卷曲性能的影响。结果表明:随牵伸倍数的增大,复合纤维的卷曲性能提高;随热定形温度的升高,复合纤维的力学性能下降,卷曲性能提高;随热处理温度的降低,复合纤维的卷曲性能提高。最后,复合纤维经圆机织造后,进行阳离子染色处理,织物在98℃染色就可以达到良好的染色效果。  相似文献   

4.
PA66/TLCP/HNTs纳米管复合材料的制备与性能   总被引:2,自引:0,他引:2  
采用熔融共混方法制备了尼龙(PA)66/热致液晶聚合物(TLCP)/埃洛石纳米管(HNTs)复合材料,研究了其热性能、微观形态及力学性能.结果表明,当TLCP的质量分数为4%、HNTs的质量分数为15%时,复合材料的综合性能最佳.其拉伸强度、拉伸弹性模量、弯曲强度及弯曲弹性模量相比纯PA66分别提高了30.4%、76.9%、34.4%、91.7%.熔体的加工流动性得到改善,PA66/TLCP/HNTs复合材料的吸水性能明显降低.少量的TLCP有利于提高PA66/TLCP复合材料的结晶性能和熔融温度;HNTs的加入能提高复合材料的结晶温度,与基体有较好的界面结合;TLCP及HNTs能在基体中均匀地分散,TLCP在PA66/TLCP/HNTs复合材料中形成微纤结构,且沿纤维轴方向取向.  相似文献   

5.
《合成纤维》2021,50(4):4-8
以聚醚酯四氢呋喃均聚醚-聚对苯二甲酸丁二醇酯(PTMG-PBT)和PBT为原料,按照50∶50的质量比,通过熔融纺丝制备了具有高度自卷曲的并列复合弹性纤维。研究复合纤维的制备工艺参数,包括牵伸倍数、牵伸热定形温度、热处理温度和时间对并列复合弹性纤维力学性能和卷曲性能的影响。试验结果表明:牵伸倍数的增大能够极大地改变复合纤维的卷曲形貌,改善卷曲性能以及显著提高复合纤维的模量和强度;牵伸温度140℃时,复合纤维力学性能和卷曲性能最佳;热处理温度100℃、热处理时间5 min时,复合纤维的卷曲率和卷曲回复率达到最佳,分别为60%和53%。  相似文献   

6.
选用高收缩聚对苯二甲酸乙二醇酯-1(HSPET-1)与聚对苯二甲酸丙二醇酯(PTT)、高收缩聚对苯二甲酸乙二醇酯-2(HSPET-2)与共聚醚酯(COPEET)作原料,经过纺丝、拉伸及热定型工艺分别制备了HSPET-1/PTT和HSPET-2/COPEET并列复合纤维,探讨了双组分并列复合纤维热收缩率差异的形成与控制。结果表明:双组分适宜的玻璃化转变温度和冷结晶温度是制定并列复合纤维加工工艺条件的基础;拉伸-定型工艺是决定并列复合纤维双组分取向和结晶结构差异的重要手段;HSPET-1/PTT复合纤维的熔融热焓为65.06 J/g,与HSPET-1和PTT单组分纤维的熔融热焓的加权平均值接近;双组分收缩率的差异是并列复合纤维受热过程中形成三维立体卷曲结构的推动力,这种热性能的差异决定着并列复合纤维的卷曲弹性;随着热定型温度升高,纤维的断裂强度和断裂伸长率增大,卷曲弹性率提高。  相似文献   

7.
以共聚醚酯(COPEET)及高收缩聚酯(HSPET)为原料,经熔融复合纺丝,制备了COPEET/HSPET初生纤维,将初生纤维经不同热定型温度处理及2倍拉伸后,制得COPEET/HSPET并列复合纤维;对所纺纤维进行热处理,研究了热定型温度、热处理工艺条件对COPEET/HSPET并列复合纤维结晶结构和热收缩性能的影响。结果表明:当热定型温度在150~180℃时,随着热定型温度升高,COPEET/HSPET复合纤维两组分的热焓差越大,其潜在热收缩性越强;180℃热定型所制得COPEET/HSPET复合纤维经90℃,30 min的热处理,热收缩率最大,达52.65%;热收缩率较大的COPEET/HSPET复合纤维卷曲波幅小、卷曲数多且形态较不规整;沸水处理后复合纤维的结晶度明显增加。  相似文献   

8.
采用质量比为50/50的PET/PTT进行复合纺丝,纺丝速度2 300 m/min,经拉伸1.56倍,生产166dtex/72 f PET/PTT复合纤维,探讨了纺丝温度对PET/PTT复合纤维结构与性能的影响。结果表明:纺丝温度低时,PET/PTT纤维特性黏数高,纤维截面趋向于花生形;纺丝温度高时,纤维特性黏数低,纤维截面呈圆形;选择纺丝温度约275℃时,PET/PTT复合纤维具有良好的力学性能和卷曲性能,卷曲收缩率达39.6%。  相似文献   

9.
以高密度聚乙烯(HDPE)为基体,剑麻纤维素微晶(SFCM)为改性剂,采用熔融法制备HDPE/SFCM复合材料,研究了SFCM的用量对HDPE/SFCM复合材料的力学性能、热性能、熔体流动性、熔融结晶行为和断面形貌的影响。结果表明,SFCM的加入可明显提高HDPE/SFCM复合材料的拉伸模量、弯曲强度及弯曲模量,但对材料的拉伸强度影响不明显,且降低了材料的冲击韧性。同时,SFCM的加入可小幅提高复合材料的维卡软化点,降低材料的熔体流动速率,对材料的熔融温度及结晶温度影响不大,但可提高HDPE的结晶度。当加入12份的SFCM时,HDPE/SFCM复合材料的拉伸模量、弯曲强度及弯曲模量比HDPE的分别提高了138.1%,21.1%,33.3%,其结晶度比基体HDPE提高了20.5%。  相似文献   

10.
利用熔融共混法制备高密度聚乙烯(HDPE)/水滑石(LDH)复合材料,研究乙烯-丙烯酸共聚物(EAA)对复合材料的增容作用、力学性能以及结晶行为的影响.结果表明:EAA可以促进HDPE基体的结晶速率,提高复合材料结晶度;EAA对复合材料有很好的增容作用,能明显增强LDH与HDPE之间的界面粘合,促进LDH在基体中的有效分散;力学测试表明:加了EAA的复合材料比没有加EAA的复合材料力学性能有明显提高,且能使强度和韧性同时提高.  相似文献   

11.
采用熔融复合纺丝法制备了低密度聚乙烯(LDPE)/聚己内酰胺(PA6)海岛复合超细纤维,讨论了纺丝温度、海岛比例和纺丝速度对纤维的可纺性、结构和性能的影响。结果表明:在纺丝温度为278℃,LDPE/PA6质量比为50/50,45/55,40/60,35/65,30/70,冷却长度为140 mm,纺丝速度为1 000 m/min时,海岛复合纤维具有良好的可纺性和海岛结构,其超细纤维线密度为0.077~0.110 dtex;在PA6质量分数为55%条件下,提高纺丝速度,PA6超细纤维的直径进一步降低,力学性能增加,但不匀率上升。  相似文献   

12.
对羟基苯甲酸对HDPE结晶行为及力学性能的影响   总被引:4,自引:1,他引:4  
采用DSC研究了对羟基苯甲酸(HBA)对高密度聚乙烯(HDPE)非等温结晶行为的影响。分析了HBA的引入对HDPE的结晶行为、晶片厚度分布、结晶度以及力学性能的影响。结果表明,当HBA用量为HDPE的0.5%-1.0%时可以促进HDPE的结晶,从而加快HDPE的结晶速度,提高HDPE的结晶度,降低片晶的平均厚度及其分布,并提高其力学性能。  相似文献   

13.
《塑料》2015,(4)
采用磨盘碾磨废旧轮胎橡胶(WTR)/乙烯-醋酸乙烯酯(EVA)复合粉体与高密度聚乙烯(HDPE)熔融共混制备HDPE/WTR共混物,研究磨盘碾磨对HDPE/WTR共混物的形貌结构、结晶行为、流变行为及力学性能的影响。结果表明:WTR与EVA经磨盘碾磨后所得的复合粉体与HDPE熔融共混过程中形成EVA包覆WTR结构,同时WTR颗粒在基体树脂中的分散性及橡塑两相界面的相容性得到改善。此外,磨盘碾磨还能提高HDPE/WTR共混物的结晶温度及结晶度,改善共混物熔体的加工流动性,同时会降低共混物的弹性与黏性。磨盘碾磨与引入的EVA之间存在显著的协效作用,二者协同使用可大幅改善HDPE/WTR共混物的力学性能,如采用碾磨32次复合粉体制备的共混物拉伸强度、断裂伸长率、缺口冲击强度相较未碾磨样品分别提高31.2%、1500%和51.8%。  相似文献   

14.
以纤维级高密度聚乙烯(HDPE)与聚对苯二甲酸乙二醇酯(PET)为原料,采用复合纺丝法制备HDPE/PET皮芯复合纤维,考察了HDPE和PET的流变性能及二者熔体表观黏度(η_a)的匹配关系,探讨了剪切速率(■)和纺丝温度对两组分熔体黏度比的影响规律,确定了皮芯复合纺丝最佳工艺条件,并对纤维性能进行表征。结果表明:HDPE和PET熔体的η_a均随着■的增大呈现非线性降低,均为非牛顿流体;随着■的提高,HDPE与PET的黏度比呈上升趋势,当■为8 000 s~(-1)时,HDPE与PET的熔体黏度比为0.6~0.8,且随纺丝温度的升高,黏度比的变化不明显;采用密度为0.959 g/cm~3的HDPE与PET进行复合纺丝,当HDPE/PET皮芯复合比为40/60、箱体温度为288℃、拉伸温度为90℃、拉伸倍数为3.0时,可纺性好,制得的HDPE/PET皮芯复合纤维的皮芯结构明显,截面形态良好,断裂强度为3.42 cN/dtex,断裂伸长率为40.06%,干热收缩率为3.73%。  相似文献   

15.
王小娟  宫瑾  余勇  褚艳红  王经武 《塑料工业》2006,34(Z1):215-217
用差热分析法研究了PET/EN-MFMB增韧体系逐渐升温和逐渐降温的结晶行为以及逐渐升温的熔融行为。结果表明:PET/EN-MFMB增韧体系中PET冷、热结晶开始结晶温度均比原料PET的有所降低,热结晶成核速率均比原料PET的有明显提高。HDPE的结晶过程受到了PET的阻隔、约束作用。PET结晶开始熔融温度一般都比原料PET 有所提高;HDPE结晶熔融峰顶温度比原料HDPE以及EN-MFMB中的HDPE的明显降低。  相似文献   

16.
利用聚酰胺酸(PAA)溶液和纳米碳化硅(SiC)混合物作为纺丝液,通过静电纺丝法制备聚酰胺酸/碳化硅(PAA/SiC)复合纳米纤维,PAA/SiC复合纳米纤维亚胺化后得到聚酰亚胺/碳化硅(PI/SiC)复合纳米纤维。研究了PAA溶液中PAA含量、纺丝电压、纺丝距离及SiC含量对PAA/SiC复合纳米纤维形貌的影响,利用热重法分析了PI/SiC复合纳米纤维的热稳定性。结果表明,使用固含量为15%的PAA溶液作为基体材料,再将纳米SiC以6%的含量均匀分散于基体材料中制备出纺丝液,在纺丝电压为10~18kV左右、纺丝距离为15cm时,可制备出直径250nm左右、光滑、连续、SiC分布均匀的PAA/SiC复合纳米纤维。PI/SiC复合纳米纤维热稳定性优异,氮气气氛中热分解温度为550℃。  相似文献   

17.
复合纺丝法纺制超细旦纤维的工艺研究   总被引:3,自引:0,他引:3  
林耀  穆淑华 《合成纤维》1996,25(3):16-21
用复合纺丝法纺制了涤锦复合超细纤维,在常规及高速纺丝条件下,研究了冷却条件、集束点位置、纺丝速度、涤锦复合比、拉伸条件等对纤维的力学性质、热收缩性、取向和结晶等的影响,得出在上述条件下的影响规律.文中还对纤维的剥离性能及其对纤维的纺织加工性进行研究,为利用剥离法制取涤锦复合超细纤维提供依据.  相似文献   

18.
采用差示扫描量热法实现了不同降温速率条件下线型低密度聚乙烯(LLDPE)和高密度聚乙烯(HDPE)的非等温结晶,通过Jeziorny法和莫志深法研究了二者的非等温结晶动力学。结果表明:随着降温速率的增加,LLDPE和HDPE的结晶温度降低,结晶速率加快,而由于发生熔融重结晶现象导致熔融温度变化不大;LLDPE因短支链位阻效应导致晶区不完善,LLDPE结晶和熔融温度、结晶速率均低于HDPE;随着降温速率的增加,LLDPE和HDPE都从多维复杂晶体向低维简单晶体转变;分子链结构不影响二者成核机理和晶体结构;莫志深法和Jeziorny法的研究结果一致,即HDPE较LLDPE更易结晶。  相似文献   

19.
采用连续式蒸汽爆破法对棉皮纤维进行预处理,将其与聚丁二酸丁二醇酯(PBS)进行共混,制备了PBS/棉皮纤维复合材料。利用扫描电镜对棉皮纤维及PBS/棉皮纤维复合材料的微观形貌进行了分析,并研究了棉皮纤维含量对PBS/棉皮纤维复合材料熔融及结晶行为、热降解性能、热变形温度以及力学性能的影响。结果表明:经蒸汽爆破处理后,棉皮纤维直径变小,比表面积变大,在PBS基体中分散均匀;棉皮纤维的存在改变了PBS的熔融峰值温度,提高了其结晶度;与纯PBS相比,PBS/棉皮纤维复合材料在高温条件下的热稳定性得到改善维,卡软化温度和弯曲强度提高。  相似文献   

20.
采用差示扫描量热法(DSC)研究了熔融纺丝法制备的锦纶6(PA6)/聚偏二氟乙烯(PVDF)共混纤维的非等温结晶行为,并利用修正Avrami方程的Jeziorny法和R-t法对其结晶动力学进行分析。结果表明,由于PVDF的黏度大,且PVDF中的氟原子能与PA6的酰胺键形成氢键,阻碍了PA6分子链在结晶过程中的运动,导致共混纤维的结晶温度和结晶速率比纯PA6纤维低,半结晶时间比PA6大,且随着PVDF含量的增加,其变化更为明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号