首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The oxidative removal of organic sulfur compounds from model fuel with H2O2 over Ti-containing molecular sieves in the presence of N-containing compounds had been studied. The effect of the types and amounts of nitrides on oxidative desulphurization were investigated. It has been shown that pyridine and pyrrole have adverse impact on the oxidation of thiophene and lead to the decrease of corresponding removal rate. The pyridine has stronger influence than pyrrole. Quinoline and indole have no impact on the final removal rate of thiophene. However, the two kinds of nitrides, as well as carbazole, have obvious impact on the oxidation removal of benzothiophene and 4,6-dimethyl dibenzothiophene. The effect of nitrides on oxidative desulphurization can be attributed to the strong adsorption of nitrides and their oxidized products on the active sites of catalysts. For pyridine and quinoline, which are basic nitrides, their adsorptions on catalysts are even stronger than that of sulfides.  相似文献   

2.
An efficient process to remove organic sulfur compounds from model fuel has been explored. Dibenzothiophene (DBT) and 4, 6-dimethyldibenzothiophene (4, 6-DMDBT) can be completely oxidized into their corresponding sulfones by H2O2 over 14 wt.% MoO3/γ-Al2O3 catalyst under mild conditions in 15 min. The effects of solvent, initial sulfide concentration, loading of MoO3 and amount of catalyst on oxidative removal of DBT were studied. The employments of solvents have decreased the reaction rate of DBT, which can be attributed to the competitive adsorption between the sulfide and solvent. The oxidative reactivity increases in the order of thiophene (Th) < benzothiophene (BT) < DBT < 4, 6-DMDBT. The catalyst can be regenerated by methanol washing at 333 K.  相似文献   

3.
The public is increasingly exposed to various engineered nanomaterials because of their mass production and wide application. Even when the biological effects of nanomaterials have been assessed, the underlying mechanisms of action in vivo are poorly understood. The present study was designed to seek a simple, effective, and oxidative stress-based biomarker system used for screening toxicity of nanomaterials. Nano-ferroso-ferric oxide (nano-Fe3O4), nano-silicon dioxide (nano-SiO2), and single-walled carbon nanotubes (SWCNTs) were dispersed in corn oil and characterized using transmission electron microscopy (TEM). Rats were exposed to the three nanomaterials by intratracheal instillation once every 2 days for 5 weeks. We investigated their lung oxidative and inflammatory damage by bronchoalveolar lavage fluid (BALF) detection and comparative proteomics by lung tissue. Two-dimensional electrophoresis (2-DE) of proteins isolated from the lung tissue, followed by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry, was performed. In the present study, we chose to detect lactate dehydrogenase, total antioxidant capacity, superoxide dismutase, and malondialdehyde as the biomarker system for screening the oxidative stress of nanomaterials and IL-6 as the inflammatory biomarker in BALF. Proteomics analysis revealed 17 differentially expressed proteins compared with the control group: nine were upregulated and eight were downregulated. Our results indicated that exposure by intratracheal instillation to any of the three typical nanomaterials may cause lung damage through oxidative damage and/or an inflammatory reaction.  相似文献   

4.
Cell-free therapy using extracellular vesicles (EVs) from adipose-derived mesenchymal stromal/stem cells (ASCs) seems to be a safe and effective therapeutic option to support tissue and organ regeneration. The application of EVs requires particles with a maximum regenerative capability and hypoxic culture conditions as an in vitro preconditioning regimen has been shown to alter the molecular composition of released EVs. Nevertheless, the EV cargo after hypoxic preconditioning has not yet been comprehensively examined. The aim of the present study was the characterization of EVs from hypoxic preconditioned ASCs. We investigated the EV proteome and their effects on renal tubular epithelial cells in vitro. While no effect of hypoxia was observed on the number of released EVs and their protein content, the cargo of the proteins was altered. Proteomic analysis showed 41 increased or decreased proteins, 11 in a statistically significant manner. Furthermore, the uptake of EVs in epithelial cells and a positive effect on oxidative stress in vitro were observed. In conclusion, culture of ASCs under hypoxic conditions was demonstrated to be a promising in vitro preconditioning regimen, which alters the protein cargo and increases the anti-oxidative potential of EVs. These properties may provide new potential therapeutic options for regenerative medicine.  相似文献   

5.
Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra. Several treatments for PD have focused on the management of physical symptoms using dopaminergic agents. However, these treatments induce various adverse effects, including hallucinations and cognitive impairment, owing to non-targeted brain delivery, while alleviating motor symptoms. Furthermore, these therapies are not considered ultimate cures owing to limited brain self-repair and regeneration abilities. In the present study, we aimed to investigate the therapeutic potential of human adipose-derived stem cells (hASCs) using magnetic nanoparticles in a 6-hydroxydopamine (6-OHDA)-induced PD mouse model. We used the Maestro imaging system and magnetic resonance imaging (MRI) for in vivo tracking after transplantation of magnetic nanoparticle-loaded hASCs to the PD mouse model. The Maestro imaging system revealed strong hASCs signals in the brains of PD model mice. In particular, MRI revealed hASCs distribution in the substantia nigra of hASCs-injected PD mice. Behavioral evaluations, including apomorphine-induced rotation and rotarod performance, were significantly recovered in hASCs-injected 6-OHDA induced PD mice when compared with saline-treated counterparts. Herein, we investigated whether hASCs transplantation using magnetic nanoparticles recovered motor functions through targeted brain distribution in a 6-OHDA induced PD mice. These results indicate that magnetic nanoparticle-based hASCs transplantation could be a potential therapeutic strategy in PD.  相似文献   

6.
Inflammation is increasingly recognized as a critical mediator of angiogenesis, and unregulated angiogenic responses often involve human diseases. The importance of regulating angiogenesis in inflammatory diseases has been demonstrated through some successful cases of anti-angiogenesis therapies in related diseases, including arthritis, but it has been reported that some synthetic types of antiangiogenic drugs have potential side effects. In recent years, the importance of finding alternative strategies for regulating angiogenesis has begun to attract the attention of researchers. Therefore, identification of natural ingredients used to prevent or treat angiogenesis-related diseases will play a greater role. Isookanin is a phenolic flavonoid presented in Bidens extract, and it has been reported that isookanin possesses some biological properties, including antioxidative and anti-inflammatory effects, anti-diabetic properties, and an ability to inhibit α-amylase. However, its antiangiogenic effects and mechanism thereof have not been studied yet. In this study, our results indicate that isookanin has an effective inhibitory effect on the angiogenic properties of microvascular endothelial cells. Isookanin shows inhibitory effects in multiple stages of PGE2-induced angiogenesis, including the growth, proliferation, migration, and tube formation of microvascular endothelial cells. In addition, isookanin induces cell cycle arrest in S phase, which is also the reason for subsequent inhibition of cell proliferation. The mechanism of inhibiting angiogenesis by isookanin is related to the inhibition of PGE2-mediated ERK1/2 and CREB phosphorylation. These findings make isookanin a potential candidate for the treatment of angiogenesis-related diseases.  相似文献   

7.
Adult Renal Stem/Progenitor Cells (ARPCs) have been recently identified in the human kidney and several studies show their active role in kidney repair processes during acute or chronic injury. However, little is known about their immunomodulatory properties and their capacity to regulate specific T cell subpopulations. We co-cultured ARPCs activated by triggering Toll-Like Receptor 2 (TLR2) with human peripheral blood mononuclear cells for 5 days and 15 days and studied their immunomodulatory capacity on T cell subpopulations. We found that activated-ARPCs were able to decrease T cell proliferation but did not affect CD8+ and CD4+ T cells. Instead, Tregs and CD3+ CD4- CD8- double-negative (DN) T cells decreased after 5 days and increased after 15 days of co-culture. In addition, we found that PAI1, MCP1, GM-CSF, and CXCL1 were significantly expressed by TLR2-activated ARPCs alone and were up-regulated in T cells co-cultured with activated ARPCs. The exogenous cocktail of cytokines was able to reproduce the immunomodulatory effects of the co-culture with activated ARPCs. These data showed that ARPCs can regulate immune response by inducing Tregs and DN T cells cell modulation, which are involved in the balance between immune tolerance and autoimmunity.  相似文献   

8.
Catalytic wet oxidation has become one of the best options for mineralization of dyes in water. In this work, mineralization of methylene blue in water was tried by using raw and acid-treated (0.50, 0.75, and 1.00 N H2SO4) MnO2 as oxidation catalysts. Fourier transform infrared, scanning electron microscopy, surface area and cation exchange capacity measurements were used to characterize the catalysts. The acid-treated materials showed large increases in surface area while changes in other surface characteristics were moderate in nature. The oxidative destruction of the dye was possible at near room temperature and the process was optimized with respect to interaction time, dye concentration, catalyst loading, pH of the medium, and temperature. The dye (1.0 mg/L) was oxidized to the extents of 88.5%, 96.5%, 96.8%, and 97.7% with corresponding chemical oxygen demand (COD) reduction of 64.7%, 86.4%, 87.2%, and 88.2% by raw MnO2, 0.50, 0.75, and 1.00 N acid-treated MnO2(catalyst loading 2.5 g/L), respectively. The reduction in COD indicated oxidation of the dye to simpler organic compounds achieving mineralization to a large extent. The oxidation followed first-order kinetics and the catalysts could be used up to six repeated runs without much change in activity. Analysis of the intermediate products of oxidation helped in proposing the potential pathways for oxidative conversion of methylene blue.  相似文献   

9.
S?awomir Ku? 《Fuel》2003,82(11):1331-1338
The catalytic performance in oxidative coupling of methane (OCM) of unmodified pure La2O3, Nd2O3, ZrO2 and Nb2O5 has been investigated under various conditions. The results confirmed that the activity of La2O3 and Nd2O3 was always much higher than that of the remaining two. The surface basicity/base strength distribution of pure La2O3, Nd2O3, ZrO2 and Nb2O5 was measured using a test reaction of transformation of 2-butanol and a temperature-programmed desorption of CO2. Both methods showed that La2O3 and Nd2O3 had high basicity and contained medium and strong basic sites (lanthanum oxide more and neodymium oxide somewhat less). ZrO2 had only negligible amount of weak basic sites and Nb2O5 was rather acidic. The confrontation of the basicity and catalytic performance indicated that in the case of investigated oxides, the basicity (especially strong basic sites) could be a decisive factor in determination of the catalytic activity in OCM. Only in the case of ZrO2 it was observed a moderate catalytic performance in spite of negligible basicity. The influence of a gas atmosphere used in the calcination of oxides (flowing oxygen, helium and nitrogen) on their basicity and catalytic activity in OCM had been also investigated. Contrary to earlier observations with MgO, no effect of calcination atmosphere on the catalytic performance of investigated oxides in OCM and on their basicity was observed.  相似文献   

10.
The immature electrophysiology of human-induced pluripotent stem cell-derived cardiomyocytes (hiCMs) complicates their use for therapeutic and pharmacological purposes. An insufficient inward rectifying current (IK1) and the presence of a funny current (if) cause spontaneous electrical activity. This study tests the hypothesis that the co-culturing of hiCMs with a human embryonic kidney (HEK) cell-line expressing the Kir2.1 channel (HEK-IK1) can generate an electrical syncytium with an adult-like cardiac electrophysiology. The mechanical activity of co-cultures using different HEK-IK1:hiCM ratios was compared with co-cultures using wildtype (HEK–WT:hiCM) or hiCM alone on days 3–8 after plating. Only ratios of 1:3 and 1:1 showed a significant reduction in spontaneous rate at days 4 and 6, suggesting that IK1 was influencing the electrophysiology. Detailed analysis at day 4 revealed an increased incidence of quiescent wells or sub-areas. Electrical activity showed a decreased action potential duration (APD) at 20% and 50%, but not at 90%, alongside a reduced amplitude of the aggregate AP signal. A computational model of the 1:1 co-culture replicates the electrophysiological effects of HEK–WT. The addition of the IK1 conductance reduced the spontaneous rate and APD20, 50 and 90, and minor variation in the intercellular conductance caused quiescence. In conclusion, a 1:1 co-culture HEK-IK1:hiCM caused changes in electrophysiology and spontaneous activity consistent with the integration of IK1 into the electrical syncytium. However, the additional electrical effects of the HEK cell at 1:1 increased the possibility of electrical quiescence before sufficient IK1 was integrated into the syncytium.  相似文献   

11.
Oxidative stress is associated with different neurological and psychiatric diseases. Therefore, development of new pharmaceuticals targeting oxidative dysregulation might be a promising approach to treat these diseases. The G-protein coupled receptor 55 (GPR55) is broadly expressed in central nervous tissues and cells and is involved in the regulation of inflammatory and oxidative cell homeostasis. We have recently shown that coumarin-based compounds enfold inverse agonistic activities at GPR55 resulting in the inhibition of prostaglandin E2. However, the antioxidative effects mediated by GPR55 were not evaluated yet. Therefore, we investigated the antioxidative effects of two novel synthesized coumarin-based compounds, KIT C and KIT H, in primary mouse microglial and human neuronal SK-N-SK cells. KIT C and KIT H show antioxidative properties in SK-N-SH cells as well as in primary microglia. In GPR55-knockout SK-N-SH cells, the antioxidative effects are abolished, suggesting a GPR55-dependent antioxidative mechanism. Since inverse agonistic GPR55 activation in the brain seems to be associated with decreased oxidative stress, KIT C and KIT H possibly act as inverse agonists of GPR55 eliciting promising therapeutic options for oxidative stress related diseases.  相似文献   

12.
Accumulation of senescent cells in tissues during normal or accelerated aging has been shown to be detrimental and to favor the outcomes of age-related diseases such as heart failure (HF). We have previously shown that oxidative stress dependent on monoamine oxidase A (MAOA) activity in cardiomyocytes promotes mitochondrial damage, the formation of telomere-associated foci, senescence markers, and triggers systolic cardiac dysfunction in a model of transgenic mice overexpressing MAOA in cardiomyocytes (Tg MAOA). However, the impact of cardiomyocyte oxidative stress on the cardiac microenvironment in vivo is still unclear. Our results showed that systolic cardiac dysfunction in Tg MAOA mice was strongly correlated with oxidative stress induced premature senescence of cardiac stromal cells favoring the recruitment of CCR2+ monocytes and the installation of cardiac inflammation. Understanding the interplay between oxidative stress induced premature senescence and accelerated cardiac dysfunction will help to define new molecular pathways at the crossroad between cardiac dysfunction and accelerated aging, which could contribute to the increased susceptibility of the elderly to HF.  相似文献   

13.
A method for the preparation of efficient TiO2/multi-wall carbon nanotubes nanocomposite photocatalysts by precipitation of anatase TiO2 nanoparticles onto differently oxidized carbon nanotubes is presented. The precursor compound titanium(IV) bromide was hydrolyzed producing pure anatase phase TiO2 nanoparticles decorated on the surface of the oxidized carbon nanotubes. The oxidative treatment of the carbon nanotubes influenced the type, quantity and distribution of oxygen-containing functional groups, which had a significant influence on the electron transfer properties, i.e., the photocatalytic activity of the synthesized nanocomposites. The results of C.I. Reactive Orange 16 photodegradation in the presence of all the synthesized nanocomposites showed their better photocatalytic activity in comparison to the commercial photocatalyst Degussa P-25.  相似文献   

14.
Nano-sized composite powder which consisted of two manganese-based oxides, alpha manganese dioxide (α-MnO2) and spinel Li-Mn-O, was successfully formed by intergrowth of the spinel phase inside α-MnO2. This composite oxide was synthesized by precipitation and heat treatment in air; α-manganese dioxide powder was firstly prepared by oxidative precipitation of Mn(II) with K2S2O8 in an aqueous solution, and then a mixture of the obtained manganese oxide powder and LiOH methanol solution was heat-treated in air. Electron microscopy and diffraction observations confirmed that the manganese oxide composite consisted of nano-sized grains of the spinel LiMn2O4 and α-MnO2 phases. It was found that this α-MnO2/spinel LiMn2O4 composite electrode exhibited highly reversible lithium insertion compared to the pristine α-MnO2 and conventional LiMn2O4, that is, the composite demonstrated high discharge capacity of 148 mAh g−1 as a cathode material of lithium cells in the potential range of 2.5-4.3 V with no significant capacity fading. It was thought that the intimately mixing of two oxides on a nanometer scale helped to maintain structural integrity on charge-discharge cycling, which leads to excellent capacity retention for both of the spinel and alpha-type manganese oxide.  相似文献   

15.
Endosome-derived small extracellular vesicles (EVs), often referred to as exosomes, are produced by almost all, if not all, cell types, and are critical for intercellular communication. They are composed of a lipid bilayer associated with membrane proteins and contain a payload of lipids, proteins and regulatory RNAs that depends on the parental cell physiological condition. By transferring their “cargo”, exosomes can modulate the phenotype of neighboring and distant cells. Stem cells (SC) were widely studied for therapeutic applications regarding their regenerative/reparative potential as well as their immunomodulatory properties. Whether from autologous or allogeneic source, SC beneficial effects in terms of repair and regeneration are largely attributed to their paracrine signaling notably through secreted EVs. Subsequently, SC-derived EVs have been investigated for the treatment of various diseases, including inflammatory skin disorders, and are today fast-track cell-free tools for regenerative/reparative strategies. Yet, their clinical application is still facing considerable challenges, including production and isolation procedures, and optimal cell source. Within the emerging concept of “allogeneic-driven benefit” for SC-based therapies, the use of EVs from allogeneic sources becomes the pragmatic choice although a universal allogeneic cell source is still needed. As a unique temporary organ that ensures the mutual coexistence of two allogeneic organisms, mother and fetus, the human placenta offers a persuasive allogeneic stem cell source for development of therapeutic EVs. Advancing cell-free therapeutics nurtures great hope and provides new perspectives for the development of safe and effective treatment in regenerative/reparative medicine and beyond. We will outline the current state of the art in regard of EVs, summarize their therapeutic potential in the context of skin inflammatory disorders, and discuss their translational advantages and hurdles.  相似文献   

16.
How ion channels impact the response of the ocular surface to dry eye is only beginning to be explored. Here, we review recent progress and provide new experimental data clarifying the exocytosis-altering actions of ion channels in conjunctival goblet cells whose release of tear-stabilizing mucin is a key adaptive response to the pre-ocular hyperosmolarity that characterizes dry eye. Patch-clamp recordings of goblet cells located in freshly excised rat conjunctiva reveal that these mucin-releasing cells respond to sustained hyperosmolarity by sequentially activating their ATP-sensitive potassium (KATP), nonspecific cation (NSC), voltage-gated calcium (VGCC), and P2X7 channels; each of which modulates exocytosis. Based on these and other new findings, we now identify four stages in the bioelectric response of conjunctival goblet cells to extracellular hyperosmolarity. To better characterize these stages, we report that high-resolution membrane capacitance (Cm) measurements of the exocytotic activity of single goblet cells demonstrate that the replenishment of mucin-filled granules after neural-evoked exocytosis is a multi-hour process, which VGCCs markedly accelerate. Yet, we also discovered that VGCC activation is high-risk since hyperosmotic-induced goblet cell death is boosted. With dry eye treatments being far from optimal, elucidating the physiologic and pathobiologic impact of the KATP/NSC/VGCC/P2X7 pathway provides a new opportunity to identify novel therapeutic strategies.  相似文献   

17.
With the ongoing commercialization, human exposure to plastic nanoparticles will dramatically increase, and evaluation of their potential toxicity is essential. There is an ongoing discussion on the human health effects induced by plastic particles. For this reason, in our work, we assessed the effect of polystyrene nanoparticles (PS-NPs) of various diameters (29, 44 and 72 nm) on selected parameters of oxidative stress and the viability of human peripheral blood mononuclear cells (PBMCs) in the in vitro system. Cells were incubated with PS-NPs for 24 h in the concentration range of 0.001 to 100 µg/mL and then labeled: formation of reactive oxygen species (ROS) (including hydroxyl radical), protein and lipid oxidation and cell viability. We showed that PS-NPs disturbed the redox balance in PBMCs. They increased ROS levels and induced lipid and protein oxidation, and, finally, the tested nanoparticles induced a decrease in PBMCs viability. The earliest changes in the PBMCs were observed in cells incubated with the smallest PS-NPs, at a concentration of 0.01 μg/mL. A comparison of the action of the studied nanoparticles showed that PS-NPs (29 nm) exhibited a stronger oxidative potential in PBMCs. We concluded that the toxicity and oxidative properties of the PS-NPs examined depended to significant degree on their diameter.  相似文献   

18.
A hydrogel system based on oxidized alginate covalently crosslinked with gelatin (ADA-GEL) has been utilized for different biofabrication approaches to design constructs, in which cell growth, proliferation and migration have been observed. However, cell–bioink interactions are not completely understood and the potential effects of free aldehyde groups on the living cells have not been investigated. In this study, alginate, ADA and ADA-GEL were characterized via FTIR and NMR, and their effect on cell viability was investigated. In the tested cell lines, there was a concentration-dependent effect of oxidation degree on cell viability, with the strongest cytotoxicity observed after 72 h of culture. Subsequently, primary human cells, namely fibroblasts and endothelial cells (ECs) were grown in ADA and ADA-GEL hydrogels to investigate the molecular effects of oxidized material. In ADA, an extremely strong ROS generation resulting in a rapid depletion of cellular thiols was observed in ECs, leading to rapid necrotic cell death. In contrast, less pronounced cytotoxic effects of ADA were noted on human fibroblasts. Human fibroblasts had higher cellular thiol content than primary ECs and entered apoptosis under strong oxidative stress. The presence of gelatin in the hydrogel improved the primary cell survival, likely by reducing the oxidative stress via binding to the CHO groups. Consequently, ADA-GEL was better tolerated than ADA alone. Fibroblasts were able to survive the oxidative stress in ADA-GEL and re-entered the proliferative phase. To the best of our knowledge, this is the first report that shows in detail the relationship between oxidative stress-induced intracellular processes and alginate di-aldehyde-based bioinks.  相似文献   

19.
NO x reduction activity on Pt and Pd catalysts had a maximum for S value as stoichiometry number at a fixed temperature, and the S value at the maximum NO x conversion increased with decreasing temperature. NO x conversion on Rh catalyst increased with decreasing S value, but independent of temperature. As for the effect of HC on NO x reduction behavior, it was concluded that, for Pt and Pd catalysts, HC adsorbs strongly on the catalysts surface to cause the self-inhibition. Increasing O2 concentration lead to oxidation of HC, but decreased the value of NO/O2 ratio. The balance point of the two factors generated a maximum NO x conversion. For Rh catalyst, the strongly adsorbed oxygen is more reactive with decreasing S value, and thus NO x conversion is increased.  相似文献   

20.
Due to the systematic increase in the production of nanomaterials (NMs) and their applications in many areas of life, issues associated with their toxicity are inevitable. In particular, the performance of heterogeneous NMs, such as nanocomposites (NCs), is unpredictable as they may inherit the properties of their individual components. Therefore, the purpose of this work was to assess the biological activity of newly synthesized Cu/TiO2-NC and the parent nanoparticle substrates Cu-NPs and TiO2-NPs on the bacterial viability, antioxidant potential and fatty acid composition of the reference Escherichia coli and Bacillus subtilis strains. Based on the toxicological parameters, it was found that B. subtilis was more sensitive to NMs than E. coli. Furthermore, Cu/TiO2-NC and Cu-NPs had an opposite effect on both strains, while TiO2-NPs had a comparable mode of action. Simultaneously, the tested strains exhibited varied responses of the antioxidant enzymes after exposure to the NMs, with Cu-NPs having the strongest impact on their activity. The most considerable alternations in the fatty acid profiles were found after the bacteria were exposed to Cu/TiO2-NC and Cu-NPs. Microscopic images indicated distinct interactions of the NMs with the bacterial outer layers, especially in regard to B. subtilis. Cu/TiO2-NC generally proved to have less distinctive antimicrobial properties on B. subtilis than E. coli compared to its parent components. Presumably, the biocidal effects of the tested NMs can be attributed to the induction of oxidative stress, the release of metal ions and specific electrochemical interactions with the bacterial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号