首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(20):30294-30306
In this paper, a novel g-C3N4/2 wt% SnS2 nanocomposite was successfully synthesized using an in-situ growth of SnS2 on g-C3N4. X-ray diffraction (XRD), atomic force microscopy (AFM), Brunauer-Emmett-Teller (BET) method, field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectrometer were used to characterize the photocatalysts. Exploring adsorption behavior, as an importatnt stage during photocatalytic reactions, is of great importance. Hence, both adsorption and photocatalytic performance of the synthesized photocatalysts have been investigated in detail. The adsorption isotherm fittings exhibited that Freundlich and Langmuir-Freundlich models can be applied to the methylene blue (MB) adsorption on the photocatalysts, indicating surface heterogeneity should be considered. A pseudo-second-order model was fitted to explore the adsorption kinetics. According to the observed redshift in the Fourier transform infrared spectroscopy (FTIR) result of g-C3N4/SnS2 nanocomposite, π-π interaction was dominant during MB adsorption. Also, a slight redshift and significant PL intensity reduction in g-C3N4/SnS2 nanocomposite led to 96% photocatalytic efficiency after 180 min under visible light radiation. The kinetics of photodegradation over g-C3N4/SnS2 was about 9 and 3 times higher than those of g-C3N4 and SnS2 photocatalysts, respectively. The superoxide and hydroxyl radicals were the main reactive species in the photocatalytic degradation with a Z-scheme charge transfer mechanism. The g-C3N4/SnS2 nanocomposite was found to be remarkably stable after three consecutive cycles of MB degradation.  相似文献   

2.
《Ceramics International》2016,42(16):18443-18452
Highly efficient visible-light-driven heterojunction photocatalysts, spindle-shaped nanoporous TiO2 coupled with graphitic g-C3N4 nanosheets have been synthesized by a facile one-step solvothermal method. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption analysis and UV–vis diffuse reflectance spectrometry (DRS), proving a successful modification of TiO2 with g-C3N4. The results showed spindle-shaped nanoporous TiO2 microspheres with a uniform diameter of about 200 nm dispersed uniformly on the surface of graphitic g-C3N4 nanosheets. The g-C3N4/TiO2 hybrid materials exhibited higher photocatalytic activity than either pure g-C3N4 or nanoporous TiO2 towards degradation of typical rhodamine B (RhB), methyl blue (MB) and methyl orange (MO) dyes under visible light (>420 nm), which can be largely ascribed to the increased light absorption, larger BET surface area and higher efficient separation of photogenerated electron–hole pairs due to the formation of heterostructure. In addition, the possible transferred and separated behavior of electron–hole pairs and photocatalytic mechanisms on basis of the experimental results are also proposed in detail.  相似文献   

3.
《Ceramics International》2015,41(4):5600-5606
In this paper, WO3 nanorods (NRs)/g-C3N4 composite photocatalysts were constructed by assembling WO3 NRs with sheet-like g-C3N4. The as-synthesized photocatalysts were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, UV–vis diffuse reflectance spectroscopy and photoluminescence. The photocatalytic activity of the photocatalysts was evaluated by degradation of Rhodamine B (RhB) under simulated sunlight irradiation. Compared to pristine WO3 NRs and g-C3N4, WO3 NRs/g-C3N4 composites exhibit greatly enhanced photocatalytic activities. The enhanced performance of WO3 NRs/g-C3N4 composite photocatalysts was mainly ascribed to the synergistic effect between WO3 NRs and g-C3N4, which improved the photogenerated carrier separation. A possible degradation mechanism of RhB over the WO3 NRs/g-C3N4 composite photocatalysts was proposed.  相似文献   

4.
《Ceramics International》2019,45(12):15178-15187
Graphitic carbon nitride (g-C3N4) has attracted increasing interest as a visible-light-active photocatalyst. In this study, saddle-curl-edge-like g-C3N4 nanosheets were prepared using a pellet presser (referred to as g-CN P nanosheets). Urea was used as the precursor for the preparation of g-C3N4. Thermal polymerization of urea in a pellet form significantly affected the properties of g-C3N4. Systematic investigations were performed, and the results for the modified g-C3N4 nanosheets are presented herein. These results were compared with those for pristine g-C3N4 to identify the factors that affected the fundamental properties. X-ray diffraction analysis and high-resolution transmission electron microscopy revealed a crystallinity improvement in the g-CN P nanosheets. Fourier-transform infrared spectroscopy provided clear information regarding the fundamental modes of g-C3N4, and X-ray photoelectron spectroscopy (XPS) peak-fitting investigations revealed the variations of C and N in detail. The light-harvesting property and separation efficiency of the photogenerated charge carriers were examined via optical absorption and photoluminescence studies. The valence band edge and conduction band edge potentials were calculated using XPS, and the results indicated a significant reduction in the bandgap for the g-CN P nanosheets. The Brunauer–Emmett–Teller surface area increased for the g-CN P nanosheets. The photocatalytic degradation performance of the g-CN P nanosheets was tested by applying a potential and using the classical dye Rhodamine B (RhB). The RhB dye solution was almost completely degraded within 28 min. The rate constant of the g-CN P nanosheets was increased by a factor of 3.8 compared with the pristine g-C3N4 nanosheets. The high crystallinity, enhanced light absorption, reduced bandgap, and increased surface area of the saddle-curl-edge-like morphology boosted the photocatalytic performance of the g-CN P nanosheets.  相似文献   

5.
《Ceramics International》2022,48(15):21898-21905
Recently, there has been a significant interest in developing high-performance photocatalysts for removing organic pollutants from water environment. Herein, a ternary graphitic C3N4 (g-C3N4)/Ag3PO4/AgBr composite photocatalyst is synthesized using an in-situ precipitation-anion-exchange process and characterized by several spectroscopic and microscopic techniques. During the photocatalytic reaction, X-ray photoelectron spectroscopy clearly illustrated the formation of metallic Ag on the g-C3N4/Ag3PO4/AgBr composite surface. The ternary composite photocatalyst demonstrated an increased photoactivity under visible light (>420 nm), achieving a complete decolorization of methyl orange (MO) in 5 min. The ternary g-C3N4/Ag3PO4/AgBr hybrid was also applied to the 2-chlorophenol degradation under visible light, further confirming its excellent photocatalytic activity. In addition, quenching experiments revealed that holes (h+) and O2?– were the major attack species in the decolorization of MO. The enhanced photoactivity of g-C3N4/Ag3PO4/AgBr results from the efficient transfer/separation of photoinduced charges with the dual Z-scheme pathway and the charge recombination sites on the formed Ag particles.  相似文献   

6.
Hoang  Lan-Anh T.  Le  Nhat Duy  Nguyen  Trinh Duy  Lee  Taeyoon 《Topics in Catalysis》2023,66(1-4):194-204

Graphitic carbon nitride (g-C3N4) has received much interest as a visible-light-driven photocatalyst for degrading pollutants such as organic dyes and antibiotics. However, g-C3N4 bulk activity could not meet expectations due to its rapid recombination of photogenerated electron–hole pairs and low specific surface area. In our study, melamine was thermally treated one-step in the presence of NH4Cl to produce g-C3N4 nanosheets. The characterizations of surface morphology and optical properties of all g-C3N4 samples were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectrum (XPS), transmission electron microscopy (TEM), and UV–visible diffuse reflectance spectroscopy. Compared to bulk g-C3N4, g-C3N4 nanosheets demonstrated excellent photocatalytic activities, with approximately 98% RhB removal after 210 min of visible light irradiation. Furthermore, the effect of catalyst dosage, pH, and RhB concentration on the removal percentage dye of g-C3N4 nanosheets was also investigated. h+ and ?O2? species were demonstrated as the key reactive species for the RhB. Besides, ECN exposed a tetracycline degradation efficiency of 80.5% under visible-light irradiation for 210 min, which is higher than BCN (60.8%). The improved photocatalytic activity of g-C3N4 nanosheets is due to the restriction of the recombination of photogenerated electrons/hole pairs, as provided by photoluminescence spectra and Nyquist plot. As a result, our research may offer an effective approach to fabricating g-C3N4 nanosheets with high photocatalytic activity and high stability for environmental decontamination.

  相似文献   

7.
《Ceramics International》2020,46(14):21958-21977
The fabrication of nanocomposite photocatalytsts with excellent photocatalytic activity is an important step in the improved degradation of organic dyes. A series of nanocomposite photocatalysts was synthesized with g-C3N4 and ZnO loading contents of 10, 20 and 30%. The nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) surface area analysis, X-ray photoelectron spectroscopy (XPS) and diffuse reflectance spectroscopy (DRS). The optical band gaps of g-C3N4, ZnO and ZnAl2O4 were about 2.79, 3.21 and 3.55 eV, respectively. Methylene blue (MB) was degraded over the prepared photocatalysts under UV irradiation. Photocatalytic activity was about 9.1 and 9.6 times higher, respectively, on 20%g-C3N4/ZnAl2O4 and 20%ZnO/ZnAl2O4 nanocomposite photocatalysts than on pure ZnAl2O4 spinel powders. Recycling experiments showed that 20%g-C3N4/ZnAl2O4 and 20%ZnO/ZnAl2O4 nanocomposite photocatalysts exhibited good stability after five cycles of use.  相似文献   

8.
《Ceramics International》2017,43(7):5751-5758
A series of novel TiO2-BiOCl-ZnCr-Ex composites for use as photocatalysts were synthesized via a facile solvothermal process using an exfoliated ZnCr-LDH (ZnCr-Ex) and depositing BiOCl and TiO2 sequentially on the surface of ZnCr-Ex. The composites were characterized by XRD, TEM, SEM-EDS and UV–vis diffuse reflectance spectroscopy. In these composites, the BiOCl nanosheets were deposited first on the surfaces of ZnCr-Ex and then the TiO2 nanoparticles were dispersed on the surface of BiOCl-ZnCr-Ex material as were seen from SEM and TEM analyses. The photocatalytic degradation of Rhodamine B (RhB) indicated that the TiO2-BiOCl-ZnCr-Ex composite showed much higher visible-light photocatalytic activity for degradation of RhB than TiO2 alone, BiOCl alone or the BiOCl-ZnCr-Ex by itself. The possible mechanisms of photocatalytic activity were discussed. Moreover, the present composite photocatalysts exhibited satisfactory re-usability for at least three cycles. Because of the facile synthesis process, higher photocatalytic activity under visible light irradiation and satisfactory re-usability of these composites, they can be touted as potential catalysts for degradation of organic pollutants in wastewater treatment.  相似文献   

9.
《Ceramics International》2021,47(18):26063-26073
In this contribution, a Z-scheme mesoporous BiVO4/g-C3N4 nanocomposite heterojunction with a considerable surface area and high crystallinity was synthesized by a simple soft and hard template-assisted approach. This material demonstrates superior visible light-driven photocatalysis for the photoreduction of Hg(II) ions. TEM and XRD results show that the mesoporous BiVO4 NPs, with a monoclinic phase and an ellipsoid-like shape, are highly dispersed onto the porous 2D surfaces of g-C3N4 nanosheets with a particle size of 5–10 nm. The obtained BiVO4/g-C3N4 nanocomposites with a p-n heterojunction show significantly enhanced Hg(II) photoreduction efficiency compared to the mesoporous BiVO4 NPs and pristine g-C3N4. Among all synthesized photocatalysts, the 1.2% BiVO4/g-C3N4 nanocomposite indicated the highest photoreduction of Hg(II) performance, reaching ~ 100% within 60 min; this result is 3.9 and 4.5 –fold larger than that of the BiVO4 NPs and pristine g-C3N4. The Hg(II) photoreduction rates highly increase to 208.90, 314.95, 411.23 and 418.68 μmol g−1min−1 for the mesoporous 0.4, 0.8, 1.2 and 1.6% BiVO4/g-C3N4 nanocomposites, respectively. The reduction rate of the mesoporous 1.2% BiVO4/g-C3N4 nanocomposite demonstrated a 5.2 and 3.8 times larger increase than that of the pristine g-C3N4 nanosheets and pure BiVO4 NPs. The superior Hg(II) photoreduction efficiency was ascribed to decreased carrier recombination and the improved utilization of visible light by constructing BiVO4/g-C3N4 nanocomposites with a p-n junction. Transient photocurrent measurement and photoluminescence spectra were employed to confirm the possible Hg(II) photoreduction mechanism over these BiVO4/g-C3N4 photocatalysts. This research provides an accessible route for the nanoengineered design of mesoporous BiVO4/g-C3N4 heterostructures that demonstrated unique photocatalytic performance.  相似文献   

10.
A novel molybdenum disulfide (MoS2) and graphitic carbon nitride (g-C3N4) composite photocatalyst was synthesized using a low temperature hydrothermal method. MoS2 nanoparticles formed on g-C3N4 nanosheets greatly enhanced the photocatalytic activity of g-C3N4. The photocatalyst was tested for the degradation of methyl orange (MO) under simulated solar light. Composite 3.0 wt.% MoS2/g-C3N4 showed the highest photocatalytic activity for MO decomposition. MoS2 nanoparticles can increase the interfacial charge transfer and thus prevent the recombination of photo-generated electron–hole pairs. The novel MoS2/g-C3N4 composite is therefore shown as a promising catalyst for photocatalytic degradation of organic pollutants using solar energy.  相似文献   

11.
《Ceramics International》2023,49(2):2149-2156
Photocatalytic degradation is an ecologically benign method of reducing organic contaminants in wastewater. To remove the pollutant 1-naphthol, highly efficient 0D/2D Bi2MoO6/g-C3N4 heterojunctions were successfully assembled by a one-step hydrothermal method, where zero-dimension (0D) Bi2MoO6 nanoparticles were firmly bonded to two-dimension (2D) g-C3N4 nanosheets. 0D/2D Bi2MoO6/g-C3N4 exhibited exceptional degradation efficiency for 1-naphthol with a removal rate of 81.5% after 60 min of visible light irradiation. The enhanced photocatalytic ability was attributed to the matched band structures and tightly connected heterojunctions, which effectively prevented the recombination of photogenerated carriers. Besides, the photodegradation mechanism was revealed by investigating the catalysts' crystal phase, morphology, physicochemical and optical properties. This work introduces a novel method for one-step preparation of 0D/2D photocatalysts and advances the utilization of photodegradation for organic pollutants.  相似文献   

12.
《Ceramics International》2020,46(8):12192-12199
The g-C3N4/ZnO nanorods were prepared by simple hydrothermal, grinding and calcination methods. The characterization of g-C3N4/ZnO nanorods was done by different analytical techniques such as SEM, TEM, XRD, XPS, FT-IR and UV–Vis. g-C3N4/ZnO nanorods with heterostructures have been successfully synthesized without changing the structure between the monomers, which broadens the visible light response range and improves several major pollutants in water degradation rate. Photocatalytic studies were done for the degradation of MB, RhB, Cr(VI) and eosin which are almost fully degraded. The experimental results show that the photocatalytic performance of the nanorods is much better than others. The g-C3N4/ZnO photocatalyst has excellent stability and repeated cycle performance. Basing on the results of comprehensive free radical trapping test and ESR tests, it is proposed that the main active substance of the catalyst for degrading dyes is ·02-, and ·OH played significant roles in the degradation process. A good photocatalytic mechanism has been proven.  相似文献   

13.
《Ceramics International》2016,42(3):4063-4071
The graphitic carbon nitride (g-C3N4) was rapidly synthesized via direct high-energy microwave heating approach. During the preparation process, only low-cost melamine and artificial graphite powders were used, without any metal catalysts or inert protective gas. The microstructure was investigated by using X-ray diffraction (XRD), Flourier transformed infrared (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM). The spectra of XRD and HRTEM indicated that the obtained g-C3N4 had a high crystallinity. The optical spectra covering Photoluminescence (PL) and Ultraviolet-visible (UV–vis) were also measured at room temperature. PL peak and UV–vis absorption edge of the g-C3N4 were shown at 455 nm and 469 nm, respectively, indicating visible-light photocatalytic property. Finally, the photocatalytic activity of g-C3N4 was investigated and evaluated as photocatalyst for the photo-degradation of Rhodamine B (RhB) and Methyl Orange (MO) in aqueous solution under visible-light (λ>420 nm) irradiation, respectively. Results indicated that the g-C3N4 sample displayed an excellent performance of removing of RhB and MO due to the improved crystallinity and large surface area of 126 m2/g. After the visible-light photocatalytic reaction for 40 min, the decolorization ratios of RhB and MO reached up to 100% and 94.2%, respectively.  相似文献   

14.
The rational design of hierarchical heterojunction photocatalysts with efficient spatial charge separation remains an intense challenge in hydrogen generation from photocatalytic water splitting. Herein, a noble-metal-free MoS2/g-C3N4/ZnIn2S4 ternary heterostructure with a hierarchical flower-like architecture was developed by in situ growth of 3D flower-like ZnIn2S4 nanospheres on 2D MoS2 and 2D g-C3N4 nanosheets. Benefiting from the favorable 2D-2D-3D hierarchical heterojunction structure, the resultant MoS2/g-C3N4/ZnIn2S4 nanocomposite loaded with 3 wt% g-C3N4 and 1.5 wt% MoS2 displayed the optimal hydrogen evolution activity (6291 μmol g?1 h?1), which was a 6.96-fold and 2.54-fold enhancement compared to bare ZnIn2S4 and binary g-C3N4/ZnIn2S4, respectively. Structural characterizations reveal that the significantly boosted photoactivity is closely associated with the multichannel charge transfer among ZnIn2S4, MoS2, and g-C3N4 components with suitable band-edge alignments in the composites, where the photogenerated electrons migrate from g-C3N4 to ZnIn2S4 and MoS2 through the intimate heterojunction interfaces, thus enabling efficient electron-hole separation and high photoactivity for hydrogen evolution. In addition, the introduction of MoS2 nanosheets highly benefits the improved light-harvesting capacity and the reduced H2-evolution overpotential, further promoting the photocatalytic H2-evolution performance. Moreover, the MoS2/g-C3N4/ZnIn2S4 ternary heterostructure possesses prominent stability during the photoreaction process owing to the migration of photoinduced holes from ZnIn2S4 to g-C3N4, which is deemed to be central to practical applications in solar hydrogen production.  相似文献   

15.
《Ceramics International》2020,46(13):21431-21438
The solar light sensitive g-C3N4/TiO2 heterojunction photocatalysts containing 20, 50, 80, and 90 wt% graphitic carbon nitride (g-C3N4) were prepared by growing Titania (TiO2) nanoparticles on the surfaces of g-C3N4 particles via one step hydrothermal process. The hydrothermal reactions were allowed to take place at 110 °C at autogenous pressure for 1 h. Raman spectroscopy analyses confirmed that an interface developed between the surfaces of TiO2 and g-C3N4 nanoparticles. The photocatalyst containing 80 wt% g-C3N4 was subsequently heat treated 1 h at temperatures between 350 and 500 °C to improve the photocatalytic efficiency. Structural and optical properties of the prepared g-C3N4/TiO2 heterojunction nanocomposites were compared with those of the pristine TiO2 and pristine g-C3N4 powders. Photocatalytic activity of all the nanocomposites and the pristine TiO2 and g-C3N4 powders were assessed by the Methylene Blue (MB) degradation test under solar light illumination. g-C3N4/TiO2 heterojunction photocatalysts exhibited better photocatalytic activity for the degradation of MB than both pristine TiO2 and g-C3N4. The photocatalytic efficiency of the g-C3N4/TiO2 heterojunction photocatalyst heat treated at 400 °C for 1 h is 1.45 times better than that of the pristine TiO2 powder, 2.20 times better than that of the pristine g-C3N4 powder, and 1.24 times better than that of the commercially available TiO2 powder (Degussa P25). The improvement in photocatalytic efficiency was related to i) the generation of reactive oxidation species induced by photogenerated electrons, ii) the reduced recombination rate for electron-hole pairs, and iii) large specific surface area.  相似文献   

16.
《Ceramics International》2022,48(3):3293-3302
In this paper, a novel g-C3N4/ZnO composite microspheres (CZCM) with enhanced photocatalytic activity under visible light exposure were successfully prepared by a self-assembly method followed by calcination in the air. A hierarchical structure in which ZnO microspheres were closely covered with g-C3N4 nanosheets was constructed. The microstructure and photocatalytic activities of the CZCM were characterized. The photocatalytic property of CZCM was evaluated by degrading solution Methyl Orange (MO) and Tetracycline (TC). The effects of varied contents of g-C3N4 on the photocatalytic capability of CZCM were systematically investigated and the results show that the optimized CZ-15% sample exhibit much higher photocatalytic degradation efficiency than that of bare g-C3N4 or ZnO under identical conditions. The analysis of Photoluminescence (PL) and photocurrent (PC) independently conformed that the photo-induced electron-hole (e?-h+) pairs in the CZCM were effectively generated and responsible for the observed photocatalysis. The enhanced adsorption of visible-light and the effective charge separation on the surface of CZCM enabled significant improvement of photocatalytic performance. According to the experimental results and relative energy band levels of the two semiconductors, a possible photocatalysis mechanism for the reaction process is proposed.  相似文献   

17.
The reasonable modulation of tri-s-triazine structure units of g-C3N4 is an effective method to optimize its intrinsic electronic and optical properties, thus boosting its photocatalytic hydrogen-evolution activity. Herein, amino groups are successfully introduced into the tri-s-triazine structure units of g-C3N4 nanosheets to improve their H2-evolution activity via a facile oxalic acid-induced supramolecular assembly strategy. In this case, the resulting amino group-rich porous g-C3N4 nanosheets display a loose and fluffy structure with a large specific surface area (70.41 m2 g?1) and pore volume (0.50 cm3? g??1), and enhanced visible-light absorption (450–800 nm). Photocatalytic tests reveal that the amino group-rich porous g-C3N4 nanosheets (AP-CN1.0 nanosheets) exhibit a significantly elevated photocatalytic H2-production activity (130.7 μmol h?1, AQE = 5.58%), which is much greater than that of bulk g-C3N4 by a factor of 4.9 times. The enhanced hydrogen-generation performance of amino group-rich porous g-C3N4 nanosheets can be mainly attributed to the introduction of more amino groups, which can reinforce the visible-light absorption and work as the interfacial hydrogen-generation active centers to boost the photocatalytic hydrogen production. The present facile and effective regulation of tri-s-triazine structure units may provide an ideal route for the exploitation of novel and highly efficient g-C3N4 photocatalysts.  相似文献   

18.
《Ceramics International》2020,46(14):22683-22691
In order to overcome the problem of low photocatalytic rate of g-C3N4, the 3D FexS1-x/g-C3N4 heterojunction was prepared via a simple one-pot solid method. The X-Ray Diffraction (XRD) and scanning electron microscope (SEM) results demonstrated that the FexS1-x/g-C3N4 heterojunction was established and a g-C3N4 nanosheet was tightly bound to FexS1-x. Compared with g-C3N4 samples, FexS1-x coupling resulted in substantial enhancement of visible light absorption, moreover, the bandwidth of heterojunction was also expanded. In addition to effectively degrading RhB and reducing Cr(VI), the redox performance of FexS1-x/g-C3N4 was also increased in the Cr(VI)/RhB mixed system. Based on a variety of experimental results, the enhanced synergistic photocatalytic activity of the 3D FexS1-x/g-C3N4 heterojunction was attributed to enhancement of the separation of e- and h+ in FeS2, which resulted from the effective conversion of FeS into FeS2 under UV-light irradiation. The type II heterojunction structure that was produced via one-pot solid fabrication also inhibited the recombination of electron/hole pairs. FexS1-x doping and heterojunction building improve the photocatalysis capacity of g-C3N4 and broaden the visible-light response of pure g-C3N4.  相似文献   

19.
Ag/g-C3N4 photocatalysts were synthesized by a rapid microwave-assisted polyol process. The characterization results showed monodisperse Ag nanoparticles with diameters of a few nanometers closely attached to the edges of g-C3N4. The presence of Ag nanoparticles in Ag/g-C3N4 photocatalysts enhanced the visible-light absorption and suppressed the recombination of photogenerated electron/hole pairs. The Ag/g-C3N4 photocatalysts exhibited the superior visible-light responsive photocatalytic activity for rhodamine B degradation. The mechanism of visible-light induced photocatalysis over Ag/g-C3N4 photocatalysts was also discussed.  相似文献   

20.
《Ceramics International》2020,46(14):22171-22180
An effective g-C3N4/Fe@ZnO heterostructured photocatalyst was synthesized by a simple chemical co-precipitation method and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and ultraviolet–visible spectroscopy. Transmission electron microscopy revealed that 7-8 nm-sized 1%Fe@ZnO nanoparticles were evenly distributed on g-C3N4 nanosheets to form a hybrid composite. The photocatalytic effectiveness of the composites was assessed against methylene blue dye, and it was found that the 50%g-C3N4/Fe@ZnO photocatalyst was more efficient in harvesting solar energy to degrade dye than the ZnO, 1%Fe@ZnO, g-C3N4, g-C3N4/ZnO and (10, 25, 40, 60 & 75 wt%) g-C3N4/Fe@ZnO samples. The antibacterial competency of the samples was also explored against Gram-positive (Bacillus subtilis, Staphylococcus aureus and Streptococcus salivarius) and Gram-negative (Escherichia coli) bacteria through the well diffusion method. The 50%g-C3N4/Fe@ZnO nanocomposite exhibited a superior antibacterial action compared to that of the rest of the samples. The exceptionally improved photocatalytic and antimicrobial efficiency of the 50%g-C3N4/Fe@ZnO composite was primarily accredited to the synergic outcome of the interface established between Fe@ZnO nanoparticles and g-C3N4 nanosheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号